Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

где h — новая фундаментальная постоянная природы, известная как постоянная Планка. Самое удивительное, что эта «бунтарская» идея позволила Планку достичь теоретического согласия с наблюдаемой зависимостью интенсивности излучения «абсолютно черного тела» от частоты ( закон излучения Планка ). (По современным данным постоянная Планка очень мала и составляет около 6,6 х 10 – 34Дж/с.) Смелая гипотеза Планка стала первым проблеском квантовой теории, но это событие не привлекло к себе внимания физиков до тех пор, пока Эйнштейн не выдвинул еще одну поразительную идею о том, что электромагнитное поле не только излучается, но и существуетв виде таких дискретных порций.

Таким образом, согласно Эйнштейну (и Ньютону, который высказывал аналогичное утверждение за два столетия раньше) свет представляет собой поток частиц! Вспомним, что в начале XIX века блестящий теоретик и экспериментатор Томас Юнг наглядно продемонстрировал волновую природу света, а Максвелл и Герц теоретически показали, что свет представляет собой колебания электромагнитного поля.

Каким образом свет может быть одновременно и частицами, и волнами? Ведь корпускулярная и волновая концепции представляются полностью противоположными. Тем не менее, одни экспериментальные факты явно указывают на то, что свет — это поток частиц, а другие на то, что свет — это волны. В 1923 году французский аристократ и проницательный физик маркиз Луи де Бройль продвинулся в этом вопросе еще дальше, высказав в своей докторской диссертации (которая снискала одобрение Эйнштейна!) идею о том, что частицы материи иногда ведут себя как волны! Частота v волны де Бройля любой частицы с массой m также удовлетворяет соотношению Планка. Комбинируя это с формулой Эйнштейна Е = m c 2 , можно найти связь частоты v с массой m :

hv = Е = 2 .

Таким образом, согласно идее де Бройля, раздельное существование частиц и полей, бывшее в почете у классической теории, отвергается природой! Действительно, все, что осциллирует с частотой v , может существовать только в виде дискретных порций с массой hv / c 2 . Природа каким-то образом «умудряется» построить непротиворечивый мир, в котором частицы и осцилляции поля суть одно и то же!Или, точнее, мир природы состоит из каких-то более тонких составляющих, а представления о «частице» и «волне» лишь частично отражают реальность.

Еще один яркий пример проявления соотношения Планка нашел в 1913 году Нильс Бор — датский физик и выдающийся мыслитель XX века. Правила Бора требовали, чтобы угловой момент (гл.6 «Уравнение Шредингера; уравнение Дирака») электрона на ядерной орбите мог принимать только значения, кратные величине h / 2 , для которой Дирак ввел более удобное обозначение h :

h = h / 2

Таким образом, разрешены только следующие значения углового момента (относительно любой оси),

0 , h , 2h , 3h , 4h

С учетом этого нововведения«планетарная» модель атома позволила с большой точностью вычислить частоты энергетических

уровней и объяснить те «безумные» правила, которым в действительностиследует природа.

Несмотря на поразительный успех, блестящая гипотеза Бора была только временной схемой, своего рода «новой заплатой на старые меха» и получила название «старой квантовой теории». Сегодняшняя квантовая физика произошла из двух независимых схем, предложенных позже немцем Вернером Гейзенбергом и австрийцем Эрвином Шредингером («матричной механики» в 1925 году и «волновой механики» в 1926 году, соответственно). Сначала две эти две схемы казались совершенно различными, но вскоре они были включены в более общую теорию как ее эквивалентные представления. Это было сделано главным образом британским физиком-теоретиком Полем Адриеном Морисом Дираком. В последующих главах мы попытаемся окинуть беглым взглядом квантовую теорию и ее необычные следствия.

Эксперимент с двумя щелями

Рассмотрим «архетипичный» квантовомеханический эксперимент, в котором пучок электронов, света или любых других «волн-частиц» направляется сквозь две узкие щели на расположенный позади них экран (рис. 6.3).

Рис. 6.З.Эксперимент с двумя щелями и монохроматическим светом (Обозначения на рисунке: S (англ. sourse) — источник, t (англ. top) — верхняя [щель], b (англ. bottom) — нижняя [щель]. — Прим. ред.)

Для большей конкретности выберем свети условимся называть квант света «фотоном» согласно принятой терминологии. Наиболее очевидное проявление света как потока частиц(фотонов) наблюдается на экране. Свет достигает экрана в виде дискретных точечных порций энергии, которые всегда связаны с частотой света формулой Планка: Е = hv . Энергия никогда не передается в виде «половинки» (или иной доли) фотона. Регистрация фотонов представляет собой явление типа «все или ничего». Всегда наблюдается только целое число фотонов.

Но при прохождении через две щели фотоны обнаруживают волновое поведение. Предположим, что сначала открыта только одна щель (а вторая — наглухо закрыта). Пройдя через эту щель, пучок света «рассеивается» (это явление называется дифракциейи является характерным для распространения волн). Пока еще можно придерживаться корпускулярной точки зрения и считать, что расширение пучка обусловлено влиянием краев щели, заставляющем фотоны отклоняться на случайную величину в обе стороны. Когда свет, проходящий через щель, обладает достаточной интенсивностью (число фотонов велико), то освещенность экрана кажется равномерной. Но если интенсивность света уменьшить, то можно с уверенностью утверждать, что освещенность экрана распадется на отдельные пятна — в согласии с корпускулярной теорией. Яркие пятна располагаются там, где отдельные фотоны достигают экрана. Кажущееся равномерным распределение освещенности представляет собой статистический эффект, обусловленный очень большим числом участвующих в явлении фотонов (рис. 6.4).

Рис. 6.4.Картина распределения интенсивности на экране, когда открыта только одна щель: наблюдается распределение дискретных крохотных пятнышек

(Для сравнения, 60-ваттная электрическая лампа излучает около 100 000 000 000 000 000 000 фотонов в секунду!) При прохождении через щель фотоны действительно отклоняются случайным образом. Причем отклонения на различные углы имеют различные вероятности, что и порождает наблюдаемое распределение освещенности на экране.

Поделиться:
Популярные книги

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи