Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Амплитуды вероятностей
Выбор фотона в приведенных выше рассуждениях не был продиктован ничем особенным. С тем же успехом для этого подошли бы электроны, любые другие частицы или даже целые атомы. Правила квантовой механики, насколько можно судить, утверждают, что и крикетные шары, и слоны должны вести себя описанным выше странным образом, где различные альтернативные возможности могут каким-то образом образовывать «суммы» состояний с комплексными весами! Однако нам никогда не приходилось реально видетькрикетные шары или слонов в виде столь странных «сумм». Почему? Это трудная и к тому же противоречивая тема, которую я не хотел бы сейчас затрагивать. А пока же мы просто допустим в качестве рабочего правила, что существуют два различных возможных уровня описания физической реальности, которые мы называем квантовым уровнем и классическим уровнем . Мы будем использовать эти странные комбинации состояний с комплекснозначными весами только на квантовом уровне. Крикетные же шары и слоны будут у нас объектами классического
Квантовый уровень — это уровень молекул, атомов и других субатомных частиц. Обычно считается, что это уровень явлений очень «малого масштаба», но эта «малость» не относится к физическим размерам. Мы увидим, что квантовые эффекты могут происходить на расстояниях многих метров или даже световых лет. Правильнее было бы считать, что нечто принадлежит «квантовому уровню», если это связано лишь с очень малыми изменениями энергии. (В дальнейшем я попытаюсь уточнить, о чем идет речь, главным образом в главе 8,) Классический уровень — это «макроскопический» уровень, о котором мы имеем более непосредственные знания. Это — тот уровень, для которого верны наши обыденные представления о «происходящем», и где можно использовать наше обычное понятие вероятности. Мы увидим, что комплексные числа, которые нам приходится использовать на квантовом уровне, тесно связаны с классическими вероятностями. Но они не тождественны друг другу, и поэтому чтобы освоиться с этими комплексными числа, было бы очень полезно вспомнить для начала, как ведут себя классические вероятности.
Рассмотрим некую неопределеннуюклассическую систему, то есть систему, о которой мы не знаем, в каком из двух альтернативных состояний А или В она находится. Такую систему можно было бы рассматривать как «взвешенную» комбинацию альтернатив А и В :
р х альтернатива А + q х альтернатива В ,
где р — вероятность события A , a q — вероятность события В . (Напомним, что вероятность — действительное число, принимающее значение от 0 до 1 . Вероятность 1 означает, что событие «заведомо произойдет», а вероятность 0 означает, что событие «заведомо не произойдет».) Если А и В — единственно возможныеальтернативы, то сумма их вероятностей должна быть равна 1 :
p + q = 1 .
Если же существуют и другие возможности, то эта сумма должна быть меньше 1 . В этом случае выражение р: q дает отношениевероятности события А к вероятности события В . А сами вероятности событий А и В (при условии, что имеются только эти две альтернативы) были бы равна, соответственно, p /( p + q ) и q /( p + q ) — Мы можем использовать такую интерпретацию и в том случае, когда сумма р + q больше 1 . (Такой способ вычисления вероятностей мог бы быть полезным, например, если бы мы многократно повторяли эксперимент, а р было бы количеством событий A , a q — количеством событий В ). Мы будем говорить, что числа р и q нормированы, если р + q = 1 , в этом случае они дают сами вероятности, а не только отношения вероятностей.
Подобнымобразом мы поступаем и в квантовой физике, с тем лишь исключением, что в квантовой физике р и q — комплексныечисла, в силу чего я предпочитаю их обозначить и z , соответственно:
х альтернатива А + z х альтернатива В .
Как
Как проявляются обычныевероятности? Полезно представить себе какой-нибудь макроскопический объект, например, шарик, прошедший сквозь одну из двух щелей к стоящему позади экрану (как в описанном выше эксперименте с двумя щелями (см. рис. 6.3), но вместо прежнего фотона теперь фигурирует классический макроскопический шарик). Должна существовать некоторая вероятность P ( s , t ) того, что отправившись из точки s шарик достигнет верхнего отверстия t , и некоторая вероятность P ( s , t ) того, что шарик достигнет нижнего отверстия b . Кроме того, если мы выберем некоторую точку р на экране, то должна существовать некоторая вероятность P ( t , р ) того, что шарик достигнет точки р на экране, пройдя через t , и некоторая вероятность Р ( b , р ) того, что он что шарик достигнет точки р , пройдя через b . Если открыто только отверстие t , то для того, чтобы найти вероятность того, что шарик действительно достигает точки р , пройдя через отверстие t , мы умножаем вероятность того, что он попадает из точки s в t , на вероятность того, что он попадает из t в точку р :
P ( s , t ) х P ( t , p ).
Аналогично, если открыто только нижнее отверстие, то вероятность того, что шарик попадает из s в р , равна
P ( s , b) х Р ( b , р ).
Если открыты оба отверстия, то вероятность того, что шарик попадает из s в точку р через t , по-прежнему равна первому произведению P( s , t ) х P ( t , р ) (так, как если бы было открыто только отверстие t ), и вероятность того, что шарик попадает из точки s в точку р через b , по-прежнему равна P ( s , b ) х Р ( b , р ). Поэтому полная вероятность P ( s , р ) того, что шарик, побывав в точке р , попадет в точку s , равна сумме двух приведенных выше вероятностей: