Очерки истории отечественной программной инженерии в 1940-е – 80-е годы
Шрифт:
К началу 1980-х годов ЭВМ М-10 обладала: наивысшими производительностью (по некоторым оценкам – 20–30 млн. операций в сек.), емкостью внутренней памяти и пропускной способностью мультиплексного канала, достигнутыми в СССР. Впервые в мире в ней был реализован ряд новых прогрессивных решений, в том числе: предусмотрена возможность синхронного комплексирования до семи ЭВМ при прямом (минуя мультиплексный канал) обмене информацией между программами отдельных машин. При динамическом разделении оборудования; реализована автоматическая перестройка поля процессоров; в состав ЭВМ введен второй уровень внутренней памяти емкостью более 4 млн. байт с произвольным доступом; обеспечен
В 1978-м году главный конструктор М-10 – М.А. Карцев, предложил приступить к работам по созданию новой, многопроцессорной векторной вычислительной машины М-13, используя опыт, полученный при разработке, изготовлении и эксплуатации машин М-10 и М-10М, а также новейшие достижения в технологии и в электронной технике [3, 11]. В 1979-м году коллектив НИИ ВК начал разработку конструкторской документации. Были определены и заводы-изготовители, на которых предполагалось вести производство машины М-13. В течение 1980-го – 81-го годов конструкторская документация комплектно, по устройствам была передана на заводы.
ЭВМ М-13 стала машиной четвертого поколения, в качестве элементной базы в ней были использованы большие интегральные схемы. В архитектуре этой многопроцессорной векторной ЭВМ, предназначенной, в первую очередь, для обработки в реальном масштабе времени больших потоков информации, были предусмотрены четыре основных части: центральная процессорная часть, аппаратные средства поддержки операционной системы, абонентское сопряжение, специализированная процессорная часть. Специализированная процессорная часть машины была предназначена для обработки больших массивов относительно малоразрядной информации (быстрое преобразование Фурье, вычисление корреляционных функций, сравнение с порогом, проверка гипотез и др.) и имела в качестве базовых операции произведение двух комплексных чисел (двухточечное преобразование Фурье). Специальный (комплексный) арифметический процессор выполняет эту базовую операцию за один машинный такт. Эквивалентное быстродействие линии комплексных процессоров на порядок превышало быстродействие линии арифметических процессоров на сопоставимых форматах данных. Эквивалентное быстродействие специализированной процессорной части машины М-13 в максимальной комплектации при решении указанных выше задач могло достигать 2,4109 операций в секунду.
Абонентское обеспечение машины М-13 содержало операционную систему, систему программирования и отладки, файловую систему, систему документирования, библиотеку типовых программ и обеспечивало [3, 11]:
• реальный масштаб времени (РМВ), режим разделения времени (РВ), пакетную обработку;
• 4 задания РМВ, 16 заданий РВ;
• многосеансовое выполнение до 256 заданий;
• устранение последствий сбоев и резервирование.
Система автоматизации программирования и отладки включала:
• ассемблеры, Т-язык;
• алгоритмический язык высокого уровня, ориентированный на векторные вычисления;
• интерактивный режим отладки заданий РВ и РМВ в понятиях используемого языка;
• файловую систему;
• систему документирования;
• библиотеку типовых программ;
• систему технического обслуживания.
Машина М-13 имела модульное построение и допускала переменную комплектацию, способную оптимально обеспечить пользователю необходимые технические характеристики. Центральная
В многопроцессорной системе 4-го поколения М-13 впервые реализована аппаратура пооперационных циклов (обеспечивающая независимость программы от числа процессоров в системе), аппаратура сегментностраничной организации памяти (перекрывающая возможности файловой системы), программноуправляемый периферийный процессор для операций типа преобразования Фурье, Уолша, Адамара, Френеля, вычисления корреляционных функций, пространственной фильтрации и т. п. Среднее быстродействие центральной части – до 50 млн. операций в секунду (или до 200 млн. коротких операций в секунду), внутренняя память – до 34 Мбайт, скорость внешнего обмена – до 100 Мбайт в секунду, эквивалентное быстродействие периферийного процессора на своем классе задач – до 2 миллиардов операций в секунду.
М.А. Карцев – автор фундаментальных теоретических работ по вычислительной технике (5 монографий, 16 изобретений). Книги «Арифметические устройства электронных цифровых машин» (русское издание – 1958 г., позднее переиздавалась за рубежом), «Арифметика цифровых машин» (1969 г.) заложили основы теории арифметических устройств; их выводы вошли в учебники «Архитектура цифровых вычислительных машин» и «Вычислительные системы и синхронная арифметика», где практически впервые сделана попытка поставить на научную основу проектирование общей структуры ЭВМ и аппаратуры для выполнения параллельных вычислений.
Специализированные ЭВМ реального времени (третья группа ЭВМ) МВК Эльбрус-1 (1979-й год) и МВК Эльбрус-2 (1984-й год) (С.А. Лебедев,
В.С. Бурцев), относились по существу к следующему этапу (1980-е – 90-е годы) развития специализированной отечественной вычислительной техники [2, 11]. Однако их целесообразно кратко представить в данном разделе, вследствие основной области применения. Эти МВК двойного применения (гражданского и военного), предназначались для использования в высокопроизводительных информационно-вычислительных и управляющих системах, в том числе, в системах непрерывного действия, работающих в реальном масштабе времени, а также в научных и промышленных вычислительных центрах коллективного пользования в пакетном режиме и в режиме реального времени.
Программное обеспечение являлось общим для МВК Эльбрус-1 и Эльбрус-2. Его отличительная особенность состояла в использовании языка высокого уровня ЭЛЬ-76, являющегося автокодом системы для написания системных программ, в частности, операционной системы, трансляторов и целого ряда управляющих программ, работающих в реальном масштабе времени. Это позволило значительно сократить время создания программ.
Конец ознакомительного фрагмента.