Очерки истории отечественной программной инженерии в 1940-е – 80-е годы
Шрифт:
1.4. Организация подготовки первых программистов в 1950-е – 60-е годы
В Московском, Ленинградском и Киевском университетах в 1950-е годы началась подготовка специалистов по вычислительной математике, в технических высших учебных заведениях появились курсы по вычислительной технике, и стали открываться кафедры вычислительных машин [1, 4, 11]. Министерство высшего образования и Высшая аттестационная комиссия ввели формальный список таких специальностей. Эти списки в системе образования и научной аттестации играли в СССР важную роль, т. к. служили средством идентификации и формального признания квалификации специалистов. В частности, каждая образовательная специальность получала право иметь самостоятельный учебный план от первого до выпускного года обучения. Учебный план в своей основной части являлся обязательным для каждого вуза и утверждался
В 1952-м году в нескольких университетах была открыта в дополнение к существовавшей специальности «математика» новая специальность «вычислительная математика», предназначенная для подготовки специалистов, использующих вычислительную технику. Первый учебный курс программирования в СССР был прочитан А.А.Ляпуновым в 1952-м – 53-м учебном году. Структура курса складывалась на глазах у студентов. В перерыве между первым и вторым семестрами у лектора начали складываться основные подходы к «операторному методу». Вся вторая половина курса – это была по существу совместная работа профессора и студентов по созданию и уточнению символики операторов, используемых при составлении схем программ. Курс читался и воспринимался с большим энтузиазмом, и неслучайно почти половина слушателей, математиков-вычислителей, стали после выпуска профессиональными программистами. В 1955-м году в Московском университете при кафедре вычислительной математики работал семинар по смежным вопросам кибернетики и физиологии, который с 1956-го года принял название «семинар по кибернетике».
В 1955-м году чтение курса программирования в МГУ продолжил М.Р. Шура-Бура [1, 4]. Первой книгой об ЭВМ, рассчитанной на массового читателя, была книга А.И. Китова «Электронные цифровые машины», вышедшая в середине 1956-го года. Хорошим качеством книги была убедительная и увлекающая свежего читателя демонстрация новизны, вносимой ЭВМ в практику человеческой деятельности. Ее развитием стал учебник А.И. Китова и Н.А. Криницкого «Электронные цифровые машины и программирование» [5]. Это была первая книга, официально рекомендованная министерством высшего образования в качестве учебного пособия, весьма солидного объема (572 стр.), и изданная большим тиражом (25 тыс. экземпляров). Первым учебником, специально посвященным программированию, была книга киевских авторов Б.В. Гнеденко, А.С. Королюка и Е.Л. Ющенко «Элементы программирования». Они использовали для изложения условную ЭВМ и дидактику курса А.А. Ляпунова. Отдельная глава была посвящена символике адресного программирования. Первой попыткой создать солидный университетский курс программирования, базировавшийся на Алголе-60, была книга Е.А. Жоголева и Н.П.Трифонова «Курс программирования», основанная на опыте чтения лекций по программированию в МГУ.
Потребности в специалистах по программированию и в усилении подготовки по технологии системного программирования, как для общего математического обеспечения, так и для прикладных программ, привели к организации в 1969-м году новой специальности «прикладная математика» (для университетов и политехнических институтов), а также специальности «автоматизированные системы управления» (АСУ) (для отраслевых институтов). В 1975-м году подготовка по этим специальностям осуществлялась на 54 (прикладная математика) и 43 (АСУ) факультетах с общей численностью выпуска порядка 5000 человек в год.
Глава 2. История отечественной вычислительной техники в 1950-е – 70-е годы
2.1. История семейства стационарных универсальных вычислительных машин «Урал» в 1960-е – 70-е годы
В середине 60-х годов и в последующие годы, заводами страны производился серийно ряд оригинальных типов универсальных ЭВМ— БЭСМ-4; Урал-11 – 14; М-220; М-222; Минск-22; Минск-32; Раздан-2; Наири; Мир-1— 3 и другие – (см. рис. 1). Наиболее полно перечень свыше тридцати типов и десяти семейств ЭВМ, разработанных в СССР, представлен в Виртуальном компьютерном музее [10]. Некоторые ЭВМ имели
Для выделенных и рассматриваемых машин были созданы различные по функциям и качеству операционные системы и технологические компоненты программной инженерии. Квалификация их разработчиков значительно различалась, среди их продуктов можно найти оригинальные технические решения, однако большинство обеспечивало основные типовые функции автоматизации программирования, для более или менее комфортного применения соответствующих ЭВМ индивидуальными пользователями. В конце 60-х годов стало ясно, что необходимо сокращать разнотипность машин и сосредоточить их производство и разработку технологического программного обеспечения на нескольких типах наиболее перспективных универсальных ЭВМ для массового применения в научных учреждениях и промышленных предприятиях страны. Для таких ЭВМ следовало активизировать и сконцентрировать усилия специалистов по их оснащению эффективными средствами программной инженерии с целью расширения сфер применения и повышения производительности разработчиков прикладных программных продуктов.
Пензенская научная школа в области вычислительной техники, созданная Баширом Искандеровичем Рамеевым получила широкую известность и признание благодаря его таланту и колоссальному труду, вложенному в разработку и выпуск целого ряда вычислительных машин [11]. Первый, ламповый «Урал -1», был выпущен в 1957 году. Он стал «рабочей лошадью» во многих вычислительных центрах страны. Для серийного производства машины «Урал-1» был выбран завод в Пензе. Вместе с группой молодых специалистов, работавших с ним в Москве в СКБ-245, Б.И. Рамеев в 1955 – м году переехал в этот город. Коллектив разработчиков, который составил Пензенскую школу, начал складываться в 1952 – 54 годах еще в Москве в СКБ-245. Часть сотрудников училась в МИФИ, а после окончания института были направлены в СКБ-245.
В Пензе Б.И. Рамеев становится главным инженером и заместителем директора по научной работе НИИ математических машин (потом НИИ управляющих машин) и главным конструктором вычислительных машин «Урал». Машина «Урал-1» стала родоначальницей целого семейства. Простота машины, удачная конструкция, невысокая стоимость обусловили ее широкое применение. После «Урал-1» на той же элементной базе (на электронных лампах) были созданы еще две машины: в 1959 году – «Урал-2», а в 1961 – м году – «Урал-4». По сравнению с первым «Уралом» их быстродействие увеличилось в 50 раз, оперативная память была реализована на ферритовых сердечниках и значительно увеличен объем внешней памяти.
В 1960-м году были начаты работы по созданию семейства полупроводниковых «Уралов». Основные черты нового поколения машин были сформулированы еще в 1959-м году. В соответствии с ними определили состав семейства машин, их структуру, архитектуру, интерфейсы, установили принципы унификации, утвердили технические задания на устройства, ограничения на используемые комплектующие изделия и некоторые другие документы. В процессе проектирования обсуждались с разработчиками основные решения и ход работы. В ноябре 1962-го года была закончена разработка унифицированного комплекса компонентов «Урал-10», рассчитанного на автоматизированное производство. Хотя компоненты разрабатывались для использования в серии ЭВМ «Урал-11» – «Урал-16», они нашли широкое применение и в других средствах вычислительной техники и автоматике. Для этих целей было выпущено несколько миллионов штук компонентов.
В семейство полупроводниковых «Уралов» входили три модели: «Урал-11», «Урал-14» и «Урал-16». Первые две модели стали выпускаться серийно с 1964 года, а последняя – с 1969 года. Выпуск моделей этого семейства ознаменовал новую веху в творческом наследии главного конструктора Б.И. Рамеева. Это первое в нашей стране семейство машин с унифицированной системой организации связи с периферийными устройствами (унифицированный интерфейс), унифицированной оперативной и внешней памятью. В моделях этого семейства нашли свое воплощение многие идеи, которые затем широко использовались в машинах третьего поколения (развитая система прерываний, эффективная система защиты памяти, развитое программное обеспечение).