Очевидное? Нет, еще неизведанное…
Шрифт:
Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c, а не 2c, как в классической физике [70] .
В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.
Глава XIV,
70
Очень несложно убедиться, что задача определения относительной скорости двух тел тождественна отысканию закона сложения скоростей.
Как измерять длину движущихся тел, мы уже договорились в III главе. Напомним: «Длина движущегося тела есть расстояние между одновременно отмеченными положениями его начальной и конечной точек».
В классической физике длина движущегося тела, определенная таким образом, совпадала с длиной неподвижного тела, и все было хорошо. Еще и еще раз напомним:
1. До Эйнштейна вообще никто не задумывался, «как определяется длина движущихся тел». Но, по сути дела, каждый раз, измеряя длину или говоря о ней, молчаливо подразумевали, что она определяется именно так, как сказано выше.
2. Совпадение или несовпадение длин покоящегося и движущегося тела — это вопрос опыта, и никак нельзя утверждать заранее, что они должны совпадать.
Не следует навязывать природе наши взгляды и желания. В данной конкретной системе отсчета, где проводятся изменения, стержень неподвижный и стержень движущийся находятся в разных физических условиях, и нет никаких оснований ожидать, что длина не изменяется при движении. Так думали раньше, бессознательно обобщая эксперименты. Ведь в обычных опытах исключительно трудно наблюдать различие в длинах движущегося и неподвижного предмета, ибо достижимые скорости материальных тел неизмеримо меньше скорости света. Поэтому и не наблюдалось никакого изменения длины, а отсюда уверенность, что длина предмета абсолютна и неизменна независимо от того, из какой системы отсчета ее определяют.
Но… самый непосредственный анализ преобразований Лоренца показывает, что длина — величина относительная.
Действительно, длина стержня, движущегося со скоростью v, сокращается в направлении движения и определяется выражением:
где l0 — длина стержня, когда он находится в состоянии покоя [71] , то есть длина, измеренная в той системе отсчета, в которой стержень покоится. Этот эффект и называется лоренцовым сокращением длины [72] .
71
Вывод этого соотношения настолько прост, что его можно продемонстрировать.
Чтобы найти длину движущегося стержня, наблюдатель должен одновременно зафиксировать начальную и концевую точки x1 и x2. Тогда (x2 – x1) и есть длина стержня l.
Чтобы найти связь между l и l0, следует, используя преобразования Лоренца, связать координаты (x11 и x21) начальной и концевой точек в той системе, где он покоится, с соответствующими координатами x1 и x2, определенными в той системе отсчета, где он движется:
Обратим внимание: в правой формуле стоит одно и то же время t1.
Это соответствует тому, что при определении длины движущегося стержня нужно одновременно фиксировать его начальную и концевую точки. Вычитая из нижней формулы верхнюю, получим:
Но (x21 – x11) = l0 — длина стержня, определенная в системе, где он покоится. А (x2 – x1) = l —
Таким образом
72
Это название принято, поскольку в теории Лоренца (о ней упоминалось в главе XI) предполагалось, что длина тела, движущегося относительно эфира, сокращается; причем формула для сокращения такая же, как в теории относительности. Но физическое содержание формулы сокращения длины у Лоренца (как и всей его теории) совершенно отлично от содержания теории Эйнштейна. Например, в теории Лоренца имеет смысл говорить об абсолютной длине l0 — длине тела, неподвижного относительно эфира.
Для космической ракеты — спутника Солнца — наблюдаемое с Земли сокращение длины равно:
Иначе говоря, ракета укоротилась примерно на 7 стомиллионных долей процента!
Конечно, нет ни малейшей возможности заметить такое сокращение. А космические ракеты — бесспорные чемпионы скорости, если говорить о макроскопических телах.
Поэтому не должно особенно удивлять, что длина тела считалась абсолютной величиной. Иное дело, когда скорости близки к световой. Но пока не начали исследовать элементарные частицы, с такими скоростями не сталкивались.
Вот, собственно, все, что следовало сказать о понятии длины в теории относительности. Однако релятивистская постановка проблемы настолько непривычна, что стоит специально обратить внимание на вопрос, который очень часто приходится слышать: сокращается ли длина на самом деле, или же лоренцово сокращение только кажущееся?
Этот вопрос связан с непониманием существа дела.
Если сказать, что лоренцово сокращение действительно объективно и реально, — это будет правильно. Но тогда может сложиться ошибочное представление, что существует какая-то выделенная система отсчета, в которой все тела имеют максимальную «истинную» длину, а во всех остальных системах она сокращается [73] . Ничего подобного, конечно, нет.
73
Именно эту идею и развивал Лоренц в своей теории, полагая, что движение тел относительно неувлекаемого эфира вызывает сокращение длины.
Лоренцово сокращение длины связано только с тем, что длина — относительная величина, зависящая от того, из какой системы отсчета ее определяют.
Спрашивать, действительно ли лоренцово сокращение, это то же самое, что спрашивать, движется ли в действительности измеряемый стержень?
Но если последний вопрос не вызывает недоумений, ибо относительность скорости очень привычна, то относительность длины часто пугает и трудно воспринимается.
По существу же, все дело в том, что очень тяжело менять привычки.
Иногда можно услышать даже, что, утверждая относительность длины, физики противоречат философскому материализму. Подобные заявления продиктованы непониманием как физики, так и философии и не заслуживали бы особого внимания, если бы не отражали все то же нежелание людей изменять привычные наглядные представления. К сожалению, однако, мир устроен таким образом, что приходится приложить известные умственные усилия, чтобы понять его структуру. Последнее философское замечание еще более относится к определению понятия времени.
Сразу сформулируем вывод.
Интервал времени между какими-то двумя событиями оказывается минимальным в той системе отсчета, где эти события произошли в одной точке.
Эта фраза может показаться несколько туманной, и потому используем традиционное оружие популярной литературы — простой пример.
В вагоне поезда Москва — Ленинград происходит одна за другой две световые вспышки.
Пусть по часам, установленным в поезде, промежуток времени между этими вспышками равен t0 — скажем, 10 часам.
В системе отсчета «поезд» вспышки произошли в одной точке, и «поездные» часы в том месте, где происходили вспышки, измеряют, естественно, время именно в этой системе отсчета.
Если моменты времени световых вспышек засекать в системе отсчета, «привязанной» к полотну железной дороги, причем опять по часам, находящимся в месте вспышек, то придется использовать двое часов, так как в этой системе вспышки происходят в разных точках (сегодня поезд в Москве, а завтра в Ленинграде!).