Очевидное? Нет, еще неизведанное…
Шрифт:
Если в момент первой вспышки часы в поезде показывали то же время, что и часы А на перроне Ленинградского вокзала в Москве, то в момент второй вспышки часы в поезде будут показывать меньшее время, чем синхронные с часами А [74] часы В на перроне Московского вокзала в Ленинграде.
Иначе говоря, если ход движущихся часов сравнивать с ходом нескольких неподвижных синхронных часов, то он будет отставать от хода покоящихся. В нашем примере «поездные» часы могут отстать на 1 час. И когда на В будет 9 часов утра, они покажут 8 часов.
74
Двое часов, находящихся в разных точках и неподвижных
Особо подчеркнем, что системы отсчета «поезд» и «полотно дороги» в разобранном примере находились в существенно неравноправных условиях. Одни часы в поезде сравнивались с двумя часами на платформе.
Если опыт видоизменить — вообразить очень длинный поезд, увешанный синхронными часами [75] , и платформу с одними часами, — то окажется: при сравнении показаний перронных часов с показаниями «поездных» мы убедимся, что отстают часы перронные.
75
В этом случае понятие одновременности, необходимое для определения синхронности часов, естественно, определяется в системе отсчета, связанной с поездом.
Поэтому нехорошо, очевидно, говорить: время в движущейся системе отсчета течет медленнее.
Такое утверждение противоречит принципу относительности. Все инерциальные системы отсчета совершенно равноправны, и, конечно, нельзя думать, что в одной системе время течет быстрее, чем в другой.
Когда говорят о лоренцовом сокращении времени, всегда имеют в виду только то утверждение, что было приведено выше [76] .
76
Ввиду большого значения этого положения стоит его повторить… Промежуток времени между двумя событиями минимален в той системе отсчета, где они произошли в одной точке пространства. Этот промежуток времени обозначают как и называют собственным временем. В любой другой инерциальной системе промежуток времени между этими событиями определяется через соотношением:
Полную равноправность понятия времени в разных инерциальных системах хорошо поясняет одна иллюстрация.
Представьте две ракеты с радиостанциями на борту. Пусть летчики снабжены физически идентичными часами. Пусть ракеты разлетаются с постоянной относительной скоростью v и каждую секунду по своим часам радиостанция каждой ракеты посылает радиосигналы.
Наблюдатель на ракете № 2, измеряя по своим часам интервалы между моментами приема радиосигналов, посланных ракетой № 1, обнаружит, что они несколько больше одной секунды. А именно:
каждый.
Это растягивание времени между двумя последовательными приемами сигналов определяется эффектом Допплера [77] .
Если теперь наблюдатель в ракете № 2 произведет несложный расчет, он заключит, что по его часам n– й сигнал был отправлен в момент времени
секунд.
(Расчет воспроизводить не будем и поверим, что здесь нет ошибки.)
Но поскольку по часам ракеты № 1 n– й сигнал был послан в момент tnN = n секунд, наблюдатель в ракете № 2 заявит, что часы ракеты № 1 отстают.
77
Воспользуемся случаем, чтобы напомнить некоторые моменты релятивистской теории эффекта Допплера для электромагнитных волн. На первый взгляд она не очень отличается от классической, и нет оснований говорить о каких-то «удивительных» выводах.
Снова, если источник и приемник двигаются навстречу друг другу, воспринимаемая приемником частота больше, чем если бы они покоились. И так же, как и раньше, если источник и приемник удаляются — воспринимаемая частота меньше. Все это очень напоминает выводы классической теории.
Но есть одно важнейшее отличие. Ясно, что если отброшен неувлекаемый эфир и для электромагнитных явлений справедлив принцип относительности, то не имеет смысла различать два разных случая: 1) источник движется, скажем, навстречу приемнику, а приемник покоится и 2) приемник движется навстречу источнику, а источник покоится. Как только отброшена «абсолютная система отсчета», такое различие теряет всякое содержание.
Изменение частоты
Если быть совсем точным, то надо добавить — той составляющей относительной скорости, что направлена по прямой, проходящей через две точки — «приемник» и «источник».
Не так уж важно, как именно изменяется формула для воспринимаемой частоты по сравнению с классической.
Существенно, что теория эффекта Допплера очень тесно связана с одним из самых поразительных выводов Эйнштейна — замедлением ритма движущихся часов. Поэтому, как уже сообщалось ранее, экспериментальную проверку своей формулы для эффекта Допплера Эйнштейн считал важнейшим опытом для проверки всей теории. Опыт великолепно подтвердил выводы Эйнштейна; причем любопытно, что сами экспериментаторы не понимали и не принимали его теории.
Действительно, между отправлением первого и n– го сигналов с ракеты № 1 по часам ракеты № 2 прошло
Но ведь вся задача сформулирована совершенно симметрично, и ракета № 1 ничем не лучше ракеты № 2. Поэтому ясно, что в нашем рассуждении можно спокойно переменить номера ракет. И с теми же основаниями наблюдатель в ракете № 1 будет утверждать, что отстают часы ракеты № 2.
Кто же прав?
Оба.
Чтобы это несколько необычное утверждение стало понятнее, надо только уточнить, что подразумевает наблюдатель ракеты № 1, определяя время отправления n-го сигнала с ракеты № 2 по своим часам.
Это время по самому своему смыслу есть не что иное, как показания часов, синхронных с часами ракеты № 1 и находящихся в той точке, где в момент отправления n– го сигнала была ракета № 2.
По сравнению с показаниями этих часов часы ракеты № 2 будут показывать меньшее время — отставать. Точно так же, утверждая, что отстают часы ракеты № 1, наблюдатель в ракете № 2 мысленно «вешает» часы, синхронные со своими, в точку, где находится ракета № 1.
Мы снова приходим к старому выводу. Отстают те часы, которые сравниваются с показаниями нескольких синхронных между собой часов другой инерциальной системы.
В таком виде это заявление выглядит несколько формально, но по смыслу оно совпадает с основным утверждением об измерении промежутка времени между двумя событиями. Интервал времени минимален в той системе отсчета, где события произошли в одной точке [78] .
78
Математический вывод лоренцова сокращения времени так же, как и длины, очень прост. Рассмотрим две системы отсчета, К и К1, относительная скорость которых направлена вдоль оси X.
В системе, где вспышки произошли в одной точке, квадрат интервала между вспышками равен с22, так как x — расстояние между точками, где произошли вспышки, — равно нулю. В системе, где вспышки случились в разных точках, квадрат интервала равен с2t2 – x2.
Поскольку интервал между событиями остается неизменным при переходе от одной системы к другой, то с22 = с2t2 – x2, или
но так как x/t = V (относительной скорости систем отсчета), то
Однако, честно признаемся, изменение ритма часов воспринимается тяжелее, чем лоренцово сокращение длины. Это вызвано, вероятно, отчасти тем, что вообще труднее воспринять понятие времени, а отчасти «необратимостью» эффекта. Что именно подразумевается под «необратимостью», лучше всего пояснить, вспомнив о длине.
Разгоним стержень относительно какой-либо инерциальной системы до скорости, близкой к скорости света, а затем затормозим его. Предположим, что при малых ускорениях по-прежнему справедливы формулы специальной теории относительности. Тогда наблюдатель, покоящийся в нашей системе, измеряя в процессе движения длину стержня, должен получить примерно такой график.
В начальный момент длина стержня равна nl0, затем с ростом скорости она постепенно уменьшается. Когда скорость достигает максимального значения v и стержень двигается по инерции, длина его остается некоторое время постоянной. Потом по мере торможения она монотонно растет, возвращаясь к прежнему значению l0. После окончания движения стержень «забывает», что он двигался. Его длина остается неизменной.