Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

Ограниченность объёма книги не позволяет нам подробно разобрать некоторые другие интересные эмоциональные наборы данных и модели, построенные на их базе, поэтому я ограничусь здесь лишь коротким упоминанием некоторых из них. В 2020 г. китайские исследователи представили общественности мультимодальный датасет MEmoR [2480] , основанный полностью на эмоциональной разметке сериала «Теория Большого взрыва» (Big Bang Theory). Создатели датасета уделили внимание разметке эмоций сразу нескольких персонажей, появляющихся в кадре, что позволяет моделям, обученным на этих данных, строить догадки о динамике эмоций общающихся людей. Мультимодальные датасеты MELD [2481] и EmoryNLP [2482] (оба включают около 13 тысяч фраз) основаны на другом популярном сериале — «Друзья» [Friends], другой мультимодальный датасет MEISD [2483] содержит по 1000 диалогов сразу из восьми популярных телесериалов, а CMU-MOSEI [2484] и MOSI [2485] содержат по несколько тысяч видео с YouTube, снабжённых эмоциональной разметкой.

2480

Shen G., Wang X., Duan X., Li H., Zhu W. (2020). MEmoR: A Dataset for Multimodal Emotion Reasoning in Videos / MM'20: Proceedings of the 28th ACM International Conference on Multimedia, October 2020, pp. 493—502 // https://doi.org/10.1145/3394171.3413909

2481

Poria S., Hazarika D., Majumder N., Naik G., Cambria E., Mihalcea R. (2018). MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations // https://arxiv.org/abs/1810.02508

2482

Zahiri S. M., Choi J. D. (2017). Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks // https://arxiv.org/abs/1708.04299

2483

Firdaus M., Chauhan H., Ekbal A., Bhattacharyya P. (2020). MEISD: A Multimodal Multi-Label Emotion, Intensity and Sentiment Dialogue Dataset for Emotion Recognition and Sentiment Analysis in Conversations // https://aclanthology.org/2020.coling-main.393.pdf

2484

Zadeh A. B., Liang P. P., Poria S., Cambria E., Morency L.-P. (2018). Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph // https://aclanthology.org/P18-1208/

2485

Zadeh A., Zellers R., Pincus E., Morency L.-P. (2016). MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos // https://arxiv.org/abs/1606.06259

Некоторые

эмоциональные датасеты включают в себя только текстовую модальность, но могут при этом иметь весьма внушительные размеры и сложную разметку. Например, датасет GoEmotions [2486] содержит около 58 000 текстовых комментариев с платформы Reddit, размеченных при помощи алфавита, включающего в себя 27 эмоций. Датасеты, подобные DREAMER [2487] , ASCERTAIN [2488] и K-EmoCon [2489] , содержат в себе данные, относящиеся к редким модальностям (например, включают в себя электроэнцефалограммы и электрокардиограммы). Датасет AffectNet содержит более миллиона изображений лиц (с опорными точками), размеченных при помощи 1250 эмоционально окрашенных тегов на шести разных языках: английском, немецком, испанском, португальском, арабском и фарси.

2486

Demszky D., Movshovitz-Attias D., Ko J., Cowen A., Nemade G., Ravi S. (2020). GoEmotions: A Dataset of Fine-Grained Emotions // https://arxiv.org/abs/2005.00547

2487

Katsigiannis S., Ramzan N. (2018). DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices // IEEE Journal of Biomedical and Health Informatics, Vol. 22, No. 1, pp. 98—107, January 2018 // https://doi.org/10.1109/JBHI.2017.2688239

2488

Subramanian R., Wache J., Abadi M. K., Vieriu R. L., Winkler S., Sebe N. (2018). ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors / IEEE Transactions on Affective Computing, Vol. 9, No. 2, pp. 147—160, 1 April—June 2018 // https://doi.org/10.1109/TAFFC.2016.2625250

2489

Park C. Y., Cha N., Kang S., Kim A., Khandoker A. H., Hadjileontiadis L., Oh A., Jeong Y., Lee U. (2020). K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations / Scientific Data, Vol. 7, Iss. 293 // https://doi.org/10.1038/s41597-020-00630-y

6.5.5 Современные достижения в анализе эмоций

Современные модели, предназначенные для распознавания эмоциональной окраски речи в аудиоканале, обычно представляют собой свёрточные или свёрточно-рекуррентные нейронные сети, получающие на вход различные представления звукового сигнала (спектрограммы, последовательности наборов мел-кепстральных коэффициентов и т. п.) и решающие задачу классификации или регрессии. В этом смысле они напоминают модели, предназначенные для решения других задач обработки человеческого голоса: определения пола и возраста говорящего, выявления ключевых слов или полнотекстового распознавания речи. Рассмотрим для примера одну из таких работ [2490] , увидевшую свет в 2020 г. и установившую, по заявлению авторов, новые рекорды в точности распознавания эмоциональной окраски сразу для двух датасетов — RAVDESS и IEMOCAP (при этом результат на датасете EMO-DB лишь несущественно уступает наилучшему существующему решению).

2490

Issa D., Fatih Demirci M., Yazici A. (2020). Speech emotion recognition with deep convolutional neural networks / Biomedical Signal Processing and Control, Vol. 59 // https://doi.org/10.1016/j.bspc.2020.101894

Её авторы, исследователи Диас Исса, Мухаммед Фатих Демирджи и Аднан Языджи из Назарбаев Университета (Астана, Казахстан), представили новую архитектуру, в которой на вход нейронной сети подаются мел-кепстральные коэффициенты, хромаграмма (представление, напоминающее спектрограмму, с тем лишь отличием, что по оси y в хромаграмме отложены не диапазоны частот, а звуковысотные классы [pitch class] — классы, образуемые множеством всех звуковых высот, отстоящих друг от друга на целое число октав), мел-спектрограмма, а также два более хитрых представления — на основе так называемых спектральных контрастов и на основе тоннетца [Tonnetz].

Термином «тоннетц» (от нем. Tonnetz — тоновая сеть), или эйлеровской звуковой сеткой, в теории музыки называют сетевую диаграмму, представляющую звуковысотную систему, задающую набор и возможную последовательность в музыкальном произведении звуковысотных классов. Узлы эйлеровской звуковой сетки соответствуют звуковысотным классам, а треугольники, объединяющие три соседних узла, соответствуют аккордам. В музыкальном произведении, принадлежащем к описываемой тоннетцем звуковысотной системе, друг за другом могут следовать только аккорды, соответствующие соседним треугольникам тоннетца.

Рис. 144.
Тоннетц, или эйлеровская звуковая сетка

Тоннетц был впервые предложен [2491] Леонардом Эйлером в 1739 г., затем на долгое время забыт, затем переоткрыт в XIX в. и стал весьма популярен у музыкальных теоретиков — таких, например, как Риман и Эттинген.

В книге одно тянет за собой другое, и трудно понять, где следует остановиться. Что такое спектрограммы, мел-шкала и кепстр, мы более-менее подробно разобрали в разделах, посвящённых распознаванию и синтезу речи. Сведения о хромаграмме, в принципе, удалось вместить в одно вроде бы понятное предложение. Хуже обстоят дела с тоннетцем. Авторы рассматриваемой нами модели использовали функцию librosa.feature.tonnetz из популярной библиотеки для обработки звука Librosa в языке Python для получения соответствующего представления звука. Для описания работы этой функции нужно объяснять, что такое натуральный строй, равномерно темперированный строй, как тоновое пространство из плоскости становится сначала трубкой с нанизанной на её поверхность спиральной матрицей Чу, а потом и вовсе гипертором. И как 12-мерный вектор хромаграммы при помощи операции построения центроидов превращается в набор из шести координат представления, предложенного [2492] Хартом, Сэндлером и Гэссером и основанного на тоннетце Эйлера. Примерно так же дело обстоит и со спектральными контрастами [2493] . В общем, выглядит как бессмысленный экскурс в теорию музыки для тех, кому она не особо-то и нужна. Один из моих коллег (занимающийся среди прочего созданием моделей для распознавания эмоций), выслушав мои страдания, посоветовал написать так: «авторы считают сложные непонятные фичи из теории музыки».

2491

Euler L. (1739). Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (in Latin) / Saint Petersburg Academy, p. 147.

2492

Harte C., Sandler M., Gasser M. (2006). Detecting Harmonic Change In Musical Audio / AMCMM '06: Proceedings of the 1st ACM workshop on Audio and music computing multimedia, October 2006, pp. 21—26 // https://doi.org/10.1145/1178723.1178727

2493

Jiang D.-N., Lu L., Zhang H.-J., Tao J.-H., Cai L.-H. (2002). Music type classification by spectral contrast feature / Proceedings of the IEEE International Conference on Multimedia and Expo // https://doi.org/10.1109/ICME.2002.1035731

Итак, авторы статьи берут хорошо известные нам фичи, а также ряд сложных и непонятных фичей из теории музыки, получают матрицу размерностью 193 x 1 (т. е. все спектральные представления строятся для всей фразы целиком; таким образом, фраза в итоге описывается набором из 193 чисел) и пихают её на вход свёрточной нейронной сети. Базовая топология сети, использованная авторами, содержит целых шесть слоёв свёртки (размер ядер везде 5 x 1), один слой максимизирующего пулинга (8 x 1), три слоя прореживания и один полносвязный слой.

Эта архитектура затем модифицируется авторами под каждую отдельную задачу путём модификации параметров прореживания, а также удаления некоторых слоёв. В случае с EMO-DB авторы выделяют отдельные сети для выявления наиболее сложно распознаваемых эмоций, а также объединяют несколько моделей в ансамбли. Впрочем, с датасетом RAVDESS неплохо справляется и базовая архитектура. Вот так выглядит матрица ошибок [confusion matrix] для этого набора данных (авторы разделили все записи на обучающую и тестовую выборки в пропорции 80 : 20, ниже приведена матрица ошибок для тестовой выборки).

В каждой ячейке матрицы ошибок в строке i и столбце j указывается процент классов j, опознанных моделью как i. При идеальной точности модели в ячейках, в которых номер столбца равен номеру строки, должны стоять единицы, а в остальных ячейках — нули.

Итоговая точность [precision] предсказаний модели составляет около 71,6% для датасета RAVDESS, что превосходит точность распознавания, демонстрируемую людьми (67,0%), почти на пять процентных пунктов (для датасета IEMOCAP точность — 64,3%). Как видно из матрицы ошибок, наиболее частая ошибка модели заключается в том, что она иногда (в 18,52% случаев) принимает страх за печаль — ошибка, которая выглядит весьма «по-человечески».

Разобранная нами работа довольно характерна для данной области. Результаты на таких «игрушечных» эмоциональных датасетах, как RAVDESS, TESS, EMO-DB, IEMOCAP, улучшаются в наше время порой несколько раз в год — вы можете сами убедиться в этом, набрав в поисковой системе название соответствующего датасета и аббревиатуру SOTA (state-of-the-art, уровень развития, употребляется в значении «лучший результат по какому-либо критерию»). Однако и глубокое обучение не миновала одна из главных проблем современной науки — проблема кризиса воспроизводимости, ввиду чего к результатам без публикации исходного кода следует относиться с осторожностью. Если опытным взглядом присмотреться к разобранной нами статье, то может возникнуть ряд вопросов, требующих прояснения. Например, в тексте статьи упоминается свёртка с ядром 5 x 5, хотя на схемах мы видим свёртку с ядром 5 x 1. Ну ладно, это сравнительно безобидная опечатка. Но вот авторы пишут (в отношении эксперимента с RAVDESS): «Поскольку разделение данных [на обучающую и тестовую выборку] осуществлялось случайным образом, классификация является независимой от актёра» [Since data partitioning is performed randomly, the classification is speaker-independent]. Если под «случайным образом» подразумевалось, что каждый образец с вероятностью 80% попадал в обучающую и с вероятностью 20% в тестовую выборки, это значит, что с довольно большой вероятностью образцы речи одного и того же актёра попали как в обучающую, так и в тестовую выборки (напомню, что в RAVDESS содержится в общей сложности 7356 записей, сделанных всего 24 актёрами). Таким образом, классификатор становится как раз зависимым от актёра. В разделе про выделение признаков ничего не сказано о параметрах использованных преобразований, не объяснено, почему число признаков в итоге оказалось равно 193, сколько из них приходится на мел-кепстральные коэффициенты, а сколько на мел-спектрограмму, как эти признаки упорядочены внутри матрицы. Это не совсем праздный вопрос, ведь, объединяя разнородные признаки в одну матрицу, которая затем подвергается свёртке, авторы допускают ситуацию, когда в окно свёртки попадут разнородные по сути величины. А применение к небольшой матрице размерностью 193 x 1 многослойной сети с целыми шестью слоями свёртки и количеством признаков в каждом из них от 128 до 256, да ещё в итоге и полносвязного слоя при сравнительно скромных параметрах прореживания наверняка должно приводить к систематическому переобучению модели. Как авторы боролись с этой проблемой? Возможно, применяли раннюю остановку обучения при достижении минимальной ошибки на тестовой выборке? Если так, то сколько экспериментов было проведено и не возник ли эффект подстройки под тестовую выборку? Или в каждом эксперименте происходило переразбиение данных?

Поделиться:
Популярные книги

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Друд, или Человек в черном

Симмонс Дэн
Фантастика:
социально-философская фантастика
6.80
рейтинг книги
Друд, или Человек в черном

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Лютая

Шёпот Светлана Богдановна
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Лютая

Интриги двуликих

Чудинов Олег
Фантастика:
космическая фантастика
5.00
рейтинг книги
Интриги двуликих

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая