Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

Используя модель PEPSI, энтузиасты быстро соорудили инструмент [2774] под названием DeepCreamPy, предназначенный для удаления цензуры с изображений, относящихся к жанру хентай (жанр японских комиксов и анимации, отличающийся наличием элементов эротики и/или порнографии).

Различных моделей GAN и их модификаций в наши дни создано превеликое множество: DCGAN [2775] , InfoGAN [2776] , DiscoGAN [2777] , ProGAN [2778] , WGAN [2779] , ImprovedWGAN [2780] , StyleGAN [2781] , StyleGAN2 [2782] , StyleGAN3 [2783] , StarGAN v2 [2784] и так далее.

2774

DeepCreamPy: Decensoring Hentai with Deep Neural Networks // https://github.com/deeppomf/DeepCreamPy

2775

Radford A., Metz L., Chintala S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks // https://arxiv.org/abs/1511.06434

2776

Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P. (2016). InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets // https://arxiv.org/abs/1606.03657

2777

Kim T., Cha M., Kim H., Lee J. K., Kim J. (2017). Learning to Discover Cross-Domain Relations with Generative Adversarial Networks // https://arxiv.org/abs/1703.05192

2778

Karras T., Aila T., Laine S., Lehtinen J. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation // https://arxiv.org/abs/1710.10196

2779

Arjovsky M., Chintala S., Bottou L. (2017). Wasserstein GAN // https://arxiv.org/abs/1701.07875

2780

Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A. (2017). Improved Training of Wasserstein GANs // https://arxiv.org/abs/1704.00028

2781

Karras T., Laine S., Aila T. (2018). A Style-Based Generator Architecture for Generative Adversarial Networks // https://arxiv.org/abs/1812.04948

2782

Karras T., Laine S., Aittala M., Hellsten J., Lehtinen J., Aila T. (2019). Analyzing and Improving the Image Quality of StyleGAN // https://arxiv.org/abs/1912.04958

2783

Karras T., Aittala M., Laine S., Harkonen E., Hellsten J., Lehtinen J., Aila T. (2021). Alias-Free Generative Adversarial Networks // https://arxiv.org/abs/2106.12423

2784

Choi Y., Uh Y., Yoo J., Ha J.-W. (2019). StarGAN v2: Diverse Image Synthesis for Multiple Domains // https://arxiv.org/abs/1912.01865

Вот

пример работы модели (StarGAN v2) для трансляции изображений между доменами:

Рис. 161. Пример трансляции изображений между доменами (модель StarGAN v2)

А вот фотографии несуществующих людей, созданные при помощи модели StyleGAN2 от компании Nvidia:

Рис. 162. Фотографии несуществующих людей (модель StyleGAN2)

В 2022 г. исследователи из Google Research продемонстрировали [2785] , как при помощи специальной техники, получившей название «самодистилляция» [self-distillation], можно обучать StyleGAN на неразмеченных изображениях, собранных в интернете. При этом модель успешно генерирует картинки высокого качества во многих доменах (в работе приводятся примеры генерации изображений львов, жирафов, слонов, попугаев и т. д.).

2785

Mokady R., Yarom M., Tov O., Lang O., Cohen-Or D., Dekel T., Irani M., Mosseri I. (2022). Self-Distilled StyleGAN: Towards Generation from Internet Photos // https://arxiv.org/abs/2202.12211

На сайте thisxdoesnotexist.com можно найти коллекцию GAN’ов для генерации изображений самых разных объектов: человеческих лиц, котиков, интерьеров, посуды, еды и даже несуществующих членов британского парламента.

Ниже приведено изображение из стэнфордского ежегодного доклада Artificial Intelligence Index Report за 2021 г. (AIIR-2021) [2786] , которое наглядно показывает прогресс в области генерации лиц.

Рис. 163. Прогресс в области генерации лиц

2786

Stanford Human-Centered Artificial Intelligence (HAI) (2021). Artificial Intelligence Index Report 2021 // https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf

Тема генеративно-состязательных моделей заслуживает, бесспорно, отдельной книги. Но создание такой книги является довольно непростой задачей, поскольку новые архитектуры появляются так быстро, что автору книги будет непросто поспевать за исследователями.

В последнее время появляются модели, работающие более чем с двумя модальностями. Например, модель VATT (Video-Audio-Text Transformer, Видеоаудиотекстовый трансформер), созданная совместными усилиями исследователей Google, Корнеллского и Колумбийского университетов [2787] , а также модель data2vec от Meta (бывшей Facebook) [2788] , помимо текста и изображений, умеют оперировать со звуковыми данными.

2787

Akbari H., Yuan L., Qian R., Chuang W.-H., Chang S.-F., Cui Y., Gong B. (2021). VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text // https://arxiv.org/abs/2104.11178

2788

Baevski A., Hsu W.-N., Xu Q., Babu A., Gu J., Auli M. (2022). The first high-performance self-supervised algorithm that works for speech, vision, and text / Meta AI, January 20, 2022

Исследователи из DeepMind развивают технологию, получившую название ReLIC (Representation Learning via Invariant Causal Mechanisms, Обучение представлениям через инвариантные причинные механизмы), позволяющую обучать большие свёрточные сети с архитектурной ResNet в режиме самообучения [self-supervised learning], чтобы затем использовать выученные ими представления в решении самых разных задач, в которых востребовано компьютерное зрение, — от классификации картинок до создания систем искусственного интеллекта для аркадных игр [2789] , [2790] .

2789

Mitrovic J., McWilliams B., Walker J., Buesing L., Blundell C. (2020). Representation Learning via Invariant Causal Mechanisms // https://arxiv.org/abs/2010.07922

2790

Tomasev N., Bica I., McWilliams B., Buesing L., Pascanu R., Blundell C., Mitrovic J. (2022). Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? // https://arxiv.org/abs/2201.05119

Несмотря

на популярность генеративно-состязательного подхода при создании изображений, он обладает и некоторыми недостатками. Из-за сложных нелинейных эффектов, которые возникают при совместном обучении двух моделей, процесс обучения может растягиваться на длительное время или вовсе не приводить к желаемому результату. Часто бывает сложно найти обеспечивающее успех обучения соотношение архитектур моделей, структур функций потерь и различных гиперпараметров, что делает эксперименты в области генеративно-состязательных систем вычислительно затратными и довольно плохо предсказуемыми. Поэтому параллельно с генеративно-состязательной парадигмой развиваются и альтернативные подходы, например авторегрессионные модели [2791] . Наверное, самыми известными моделями такого рода в середине 2010-х гг. стали PixelRNN [2792] и PixelCNN [2793] . Эти модели в явном виде эксплуатируют зависимости между пикселями изображения, пытаясь предсказать очередной пиксель, опираясь на уже сгенерированные. При этом PixelRNN — это рекуррентная архитектура на базе LSTM, которая рассматривает изображения в качестве последовательностей пикселей, а PixelCNN — свёрточная архитектура, получающая на вход уже сгенерированную часть картинки. Дополнительно на вход сети можно подавать различного рода обусловливающие векторы, например содержащие информацию о классе генерируемого объекта или о наборе его признаков. Этот набор признаков можно получить в результате подачи эталонной картинки на вход свёрточной нейронной сети, обученной решению задачи классификации. В таком случае при помощи генеративной модели можно создавать альтернативные изображения объекта на эталонной картинке.

2791

* В машинном обучении авторегрессионными обычно называют модели для предсказания следующего элемента последовательности на основе предыдущих её элементов.

2792

van den Oord A., Kalchbrenner N., Kavukcuoglu K. (2016). Pixel Recurrent Neural Networks // https://arxiv.org/abs/1601.06759

2793

van den Oord A., Kalchbrenner N., Vinyals O., Espeholt L., Graves A., Kavukcuoglu K. (2016). Conditional Image Generation with PixelCNN Decoders // https://arxiv.org/abs/1606.05328

Вскоре после появления оригинальной PixelCNN (и предложенной в оригинальной работе её модифицированной версии — Gated PixelCNN) был создан и её усовершенствованный вариант — PixelCNN++ [2794] . Сама по себе идея авторегрессионного моделирования многомерных дискретных данных при помощи глубоких нейронных сетей появилась задолго до PixelRNN и PixelCNN, но популярность в области генерации изображений она обрела только в середине 2010-х гг., под влиянием возросшего интереса к этой области.

2794

Salimans T., Karpathy A., Chen X., Kingma D. P. (2017). PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications // https://arxiv.org/abs/1701.05517

Авторегрессионные модели можно рассматривать в качестве декодеров, роль латентного пространства в которых выполняет обусловливающий вектор.

Ещё одной альтернативой генеративно-состязательным сетям являются так называемые диффузионные модели [Diffusion Model], создатели которых черпали своё вдохновение в неравновесной термодинамике. Обычно диффузионные модели учатся выполнять шаги, восстанавливающие изображение по его зашумлённой версии, для чего в обучающую выборку включаются пары картинок, в которых одна картинка была создана из другой путём диффузии, то есть добавления шума. Научившись обращать процесс диффузии вспять, модель затем может быть использована для того, чтобы в ходе цепочки последовательных шагов создавать картинки вообще из случайного шума. В качестве примеров диффузионных моделей можно назвать «Диффузионные вероятностные модели» [Diffusion probabilistic models] [2795] и «Диффузионные вероятностные модели, устраняющие шум» [Denoising diffusion probabilistic models] [2796] , [2797] . Исследования последних лет демонстрируют способность диффузионных моделей превзойти генеративно-состязательные сети в качестве генерации изображений [2798] , но сам процесс синтеза у диффузионных моделей вычислительно более затратен, так как требует выполнения большого количества шагов.

2795

Sohl-Dickstein J., Weiss E. A., Maheswaranathan N., Ganguli S. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics // https://arxiv.org/abs/1503.03585

2796

Ho J., Jain A., Abbeel P. (2020). Denoising Diffusion Probabilistic Models // https://arxiv.org/abs/2006.11239

2797

Nichol A., Dhariwal P. (2021). Improved denoising diffusion probabilistic models // https://arxiv.org/abs/2102.09672

2798

Dhariwal P., Nichol A. (2021). Diffusion Models Beat GANs on Image Synthesis // https://arxiv.org/abs/2105.05233

В принципе, в рамках GAN роль генератора вполне может выполнять авторегрессионная или даже диффузионная модель, однако в реальных генеративно-состязательных сетях в качестве генераторов обычно используются относительно легковесные модели (например, развёрточные [deconvolutional] сети, а в последнее время даже и трансформеры [2799] ), в противном случае и без того затратный и плохо предсказуемый процесс обучения GAN грозит стать непомерно дорогим и рискованным. Если же исключить из обучения состязательную часть, то можно позволить себе использование более сложной модели, в том числе такой, которая будет генерировать изображение при помощи многошагового процесса. Выбор конкретного подхода, как всегда, зависит во многом от специфики задачи — требований к скорости генерации и к её качеству, объёма обучающей выборки, наличия и типа разметки и так далее.

2799

Jiang Y., Chang S., Wang Z. (2021). TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up // https://arxiv.org/abs/2102.07074

6.6.9 Машина как художник. Создание изображения по текстовому описанию

Конечно, возможности современных генеративных моделей компьютерного зрения не безграничны. Решать некоторые творческие задачи на уровне, сопоставимом с уровнем людей-профессионалов, машины пока что не умеют. И попытки решения таких сложных задач представляют, как мне кажется, наибольший интерес на данный момент — ведь они демонстрируют то, что в наши дни составляет передовой край искусственного интеллекта. Примером такой сложной задачи является генерация изображения по его текстовому описанию. Качество полученных результатов пока что вызывает вопросы, однако видно, что цель уже близка.

Поделиться:
Популярные книги

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Полуостров Надежды. Трилогия

Буторин Андрей Русланович
Вселенная Метро 2033
Фантастика:
боевая фантастика
постапокалипсис
8.00
рейтинг книги
Полуостров Надежды. Трилогия

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Пророчество: Дитя Земли

Хэйдон Элизабет
2. Симфония веков
Фантастика:
фэнтези
7.33
рейтинг книги
Пророчество: Дитя Земли

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только