Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

В 2018 г. группа исследователей из университетов США и Китая в статье под названием «StackGAN++: синтез реалистичных изображений при помощи последовательности генеративно-состязательных сетей» (StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks) [2800] представила две версии генеративной архитектуры StackGAN.

Архитектура StackGAN-v1 предназначена для генерации изображения на основе текста. Эта архитектура основана на использовании сразу двух моделей, отвечающих за две стадии генерации изображения. Модель, отвечающая за первую стадию, создаёт на основе текста примитивный набросок изображения, обладающий низким качеством и слабым разрешением. На второй стадии другая модель, получив на вход результат работы первой модели, генерирует фотореалистичное изображение высокого разрешения.

2800

Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2018). StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916

Вторая версия архитектуры (StackGAN-v2) может быть использована для генерации изображений как при наличии текстового описания, так и при его отсутствии. StackGAN-v2 состоит из нескольких генераторов и дискриминаторов, организованных в древовидную структуру, при этом изображения различного масштаба, соответствующие одной и той же задаче, генерируются моделями, расположенными в различных ветвях этого дерева.

Обе модели вполне успешно справляются с задачей генерации изображения по тексту — улучшение качества картинок по сравнению с более ранними исследованиями в этой области заметно невооружённым глазом. Однако результаты удалось продемонстрировать только для специализированных наборов данных с искусственно уменьшенным числом классов изображений. Ниже приведены результаты работы обеих версий StackGAN на датасете Caltech-UCSD Birds 200 (CUB-200), содержащем почти 12 000 изображений 200 видов птиц [2801] , [2802] .

2801

 Wah C., Branson S., Welinder P., Perona P., Belongie S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR2011-001, California Institute of Technology // http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf

2802

Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916

Рис. 164.
Генерация изображений птиц по тексту (модель StackGAN)

Увеличение изображений — отдельная интересная задача в области компьютерного зрения. Обычно для её обозначения используют термины «повышение разрешения изображения» (Image Super-Resolution, ISR) и «восстановление высокого разрешения» (Super-Resolution Reconstruction, SRR). За последние несколько лет было создано множество нейросетевых архитектур для решения этой задачи. Большая часть из них основана на свёрточных нейронных сетях. На практике существует несколько разновидностей задачи повышения разрешения. Первую называют обычно увеличением разрешения для одиночного изображения (Single Image Super-Resolution, SISR). SISR предполагает, что у нас есть одиночное изображение с низким разрешением, природа которого может быть разной. Возможно, это изображение получено из изображения высокого разрешения при помощи какого-либо известного или неизвестного нам алгоритма для уменьшения размера изображения, а возможно — изначально является продуктом оцифровки с низким разрешением. Быть может, изображение и вовсе является результатом работы некоторого алгоритма (как в случае со StyleGAN). Словом, природа исходного изображения может быть разной, а результатом работы модели SISR должно стать изображение более высокого разрешения, которое, будучи уменьшенным при помощи некоторой функции уменьшения размера, дало бы нам исходное изображение. При этом изображение, являющееся результатом работы модели SISR, должно быть по возможности неотличимым от высококачественного изображения, полученного в результате оцифровки с высоким разрешением. Это означает, что изображение не должно быть размытым, должно содержать реалистичные и неискажённые изображения объектов, текстур и тому подобное. Очевидно, что при уменьшении разрешения изображения некоторая часть информации может быть потеряна безвозвратно. Если бы наши изображения были совершенно хаотичными наборами пикселей, эта затея была бы обречена на провал. Но, к счастью, в огромном количестве прикладных задач речь идёт всё-таки об изображениях каких-либо объектов, встречающихся и на каких-либо других картинках. Если модель для повышения разрешения будет обучена на множестве изображений, содержащих те же или сходные объекты, то «знания», которые модель приобретёт в ходе такого обучения, позволят ей эффективно «домысливать» утраченные при снижении разрешения детали. Важным подвидом SISR является задача, в которой мы можем сами выбирать модель для снижения разрешения исходного изображения. Одновременное обучение двух моделей — для снижения и для повышения разрешения — позволяет добиться более эффективной минимизации потерь при восстановлении исходной картинки. Это происходит благодаря тому, что модель для снижения разрешения будет терять меньше информации, необходимой для успешного восстановления изображения, а также благодаря тому, что модель для повышения разрешения «знает» об особенностях преобразования, породившего картинку с малым разрешением. Именно этот подход реализован в модели, получившей название «Контентно-адаптивный передискретизатор» (Content Adaptive Resampler, CAR) [2803] . Задачу увеличения разрешения изображения в CAR выполняет свёрточная сеть с популярной для таких задач архитектурой под названием EDSR (Enhanced Deep Super-Resolution network, Улучшенная глубокая сеть для повышения разрешения) [2804] , а задачу понижения разрешения — другая свёрточная сеть под названием ResamplerNet. Последняя выбирает индивидуальную операцию для расчёта цвета каждого из пикселей изображения пониженной размерности. Эксперименты показали, что изображения, полученные на выходе ResamplerNet, не уступают по качеству изображениям, полученным при использовании традиционных методов понижения разрешения, в то время как восстановленные изображения высокой размерности заметно превосходят по качеству результаты применения других моделей для решения задачи SISR.

2803

Sun W., Chen Z. (2019). Learned Image Downscaling for Upscaling using Content Adaptive Resampler // https://arxiv.org/abs/1907.12904

2804

Lim B., Son S., Kim H., Nah S., Lee K. M. (2017). Enhanced Deep Residual Networks for Single Image Super-Resolution // https://arxiv.org/abs/1707.02921

Рис. 165. Примеры увеличения разрешения одиночных изображений моделью CAR

Впрочем, даже без применения CAR современные модели показывают в этой задаче вполне приличные результаты. Ниже приведены примеры из современных работ, посвящённых разработке моделей для решения задачи SISR: «Сохраняющее структуру повышение разрешения с наведением по градиенту» [Structure-Preserving Super Resolution with Gradient Guidance] [2805] и «Увеличение разрешения для одиночного изображения с помощью сети с холистическим вниманием» [Single Image Super-Resolution via a Holistic Attention Network] [2806] .

2805

Ma C., Rao Y., Cheng Y., Chen C., Lu J., Zhou J. (2020). Structure-Preserving Super Resolution with Gradient Guidance // https://arxiv.org/abs/2003.13081

2806

Niu B., Wen W., Ren W., Zhang X., Yang L., Wang S., Zhang K., Cao X., Shen H. (2020). Single Image Super-Resolution via a Holistic Attention Network // https://arxiv.org/abs/2008.08767

Рис. 166. Примеры увеличения разрешения одиночных изображений различными моделями

Вторая разновидность задачи ISR называется, как несложно догадаться, MISR (Multiple Image Super-Resolution, Увеличение разрешения для множества изображений). В случае MISR мы имеем дело с ситуацией, когда у нас есть несколько изображений с низким разрешением, по которым необходимо получить объединяющее изображение высокого разрешения. Одна из основных областей применения MISR — обработка спутниковых снимков. Примером модели, предназначенной для решения задачи MISR, является EvoNet, в которой выходы нескольких свёрточных сетей, решающих задачу SISR для каждого из изображений с низким разрешением, затем специальным образом комбинируются с учётом возможных сдвигов, а после этого подвергаются пошаговой фильтрации [2807] .

2807

Kawulok M., Benecki P., Piechaczek S., Hrynczenko K., Kostrzewa D., Nalepa J. (2019). Deep Learning for Multiple-Image Super-Resolution // https://arxiv.org/abs/1903.00440

Рис. 167. Пример увеличения разрешения для множества изображений

Весной 2019 г. другая группа исследователей представила в статье «DM-GAN: генеративно-состязательные сети с динамической памятью для синтеза изображения на основе текста» (DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis) [2808] архитектуру DM-GAN, которая способна не только «рисовать» более реалистичных птичек, но и производить на свет что-то более или менее правдоподобное при работе с более разнообразным набором данных — COCO (Common Objects in COntext, Обычные объекты в контексте), содержащим более 200 000 размеченных изображений объектов, принадлежащих к одному из 80 классов (самолёты, кошки, собаки, пожарные гидранты и т. д.). На иллюстрации ниже можно наблюдать сравнение результатов DM-GAN с результатами StackGAN и ещё одной более ранней модели — AttnGAN [2809] .

2808

Zhu M., Pan P., Chen W., Yang Y. (2019). DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis // https://arxiv.org/abs/1904.01310

2809

Xu T., Zhang P., Huang Q., Zhang H., Gan Z., Huang X., He X. (2017). AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks // https://arxiv.org/abs/1711.10485

Рис. 168. Сравнение результатов синтеза изображений на основе текста для моделей DM-GAN, StackGAN и AttnGAN

Ещё одна архитектура для синтеза изображений на основе текста была описана в статье 2019 г. под названием «CPGAN: генеративно-состязательные сети с анализом полного спектра контента для синтеза изображений на основе текста» (CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis) [2810] .

2810

Liang J., Pei W., Lu F. (2019). CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis // https://paperswithcode.com/paper/cpgan-full-spectrum-content-parsing

Рис. 169.
Сравнение результатов синтеза изображений на основе текста модели CPGAN с другими моделями

На август 2020 г. эта архитектура лидировала по величине Inception score среди подобных моделей и обходила StackGAN и AttnGAN при оценке изображений людьми.

Но в самом начале 2021-го в этой области произошла очередная революция. Она была связана с появлением модели, получившей название DALL·E (в честь Сальвадора Дали и робота WALL-E из одноимённого анимационного фильма компании Pixar). Эта модель была создана исследователями из компании OpenAI. Архитектура генерирующей нейронной сети идентична версии модели GPT-3 с 13 млрд параметров. При этом используется словарь токенов, включающих в себя как элементы текста, так и элементы изображения. При обработке визуальных токенов используются несколько модифицированные матрицы внимания, но в целом перед нами наша старая знакомая, отличившаяся в задаче генерации текстов.

То, что трансформерные модели могут успешно обрабатывать изображения, было известно и ранее — пионерской работой в этом направлении в 2018 г. стала сеть Image Transformer [2811] . В 2020 г. на свет появились более совершенные модели — сначала Visual Transformer (Визуальный трансформер), или VT [2812] , затем Vision Transformer (Зрительный трансформер), или ViT [2813] , а затем улучшенные версии последнего — DEiT (Data-efficient image Transformer, Эффективный по отношению к данным трансформер изображений) [2814] и SWIN (от Shifted WINdow — сдвигающееся окно) [2815] . В том же году появились первые гибридные свёрточно-трансформерные архитектуры, например DETR (DEtection TRansformer, Трансформер обнаружения) [2816] от исследователей из Facebook, а чуть позже — его улучшенная версия Deformable DETR (Деформируемый DETR) [2817] . Созданная в 2021 г. гибридная нейросетевая архитектура — CMT (CNN Meet Transformers, Свёрточные нейронные сети сходятся с трансформерами) — позволила достичь при классификации изображений ImageNet точности top-1, равной 83,5%, что всего на 0,8 процентного пункта меньше, чем у лучшего варианта EfficientNet-B7 при примерно вдвое меньшем числе параметров [2818] . Вообще, 2021-й стал годом визуальных трансформеров — одно только перечисление новых вариантов трансформерных или гибридных архитектур для задач компьютерного зрения, созданных в этом году, заняло бы едва ли не целую страницу, поэтому вот лишь некоторые из них: CvT [2819] , CaiT [2820] , CeiT [2821] , AutoFormer [2822] , TNT [2823] , DVT [2824] , Mixer [2825] , CoAtNet [2826] , SwinV2 [2827] , MViT [2828] , PeCo [2829] , Pale Transformer [2830] и так далее.

2811

Parmar N., Vaswani A., Uszkoreit J., Kaiser L., Shazeer N., Ku A., Tran D. (2018). Image Transformer // https://arxiv.org/abs/1802.05751

2812

Wu B., Xu C., Dai X., Wan A., Zhang P., Yan Z., Tomizuka M., Gonzalez J., Keutzer K., Vajda P. (2020). Visual Transformers: Token-based Image Representation and Processing for Computer Vision // https://arxiv.org/abs/2006.03677

2813

Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale // https://arxiv.org/abs/2010.11929

2814

Touvron H., Cord M., Douze M., Massa F., Sablayrolles A., Jegou H. (2020). Training data-efficient image transformers & distillation through attention // https://arxiv.org/abs/2012.12877

2815

Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows // https://arxiv.org/abs/2103.14030

2816

Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S. (2020). End-to-end Object Detection with Transformers // https://ai.facebook.com/research/publications/end-to-end-object-detection-with-transformers

2817

Zhu X., Su W., Lu L., Li B., Wang X., Dai J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection // https://arxiv.org/abs/2010.04159

2818

Guo J., Han K., Wu H., Xu C., Tang Y., Xu C., Wang Y. (2021). CMT: Convolutional Neural Networks Meet Vision Transformers // https://arxiv.org/abs/2107.06263

2819

Wu H., Xiao B., Codella N., Liu M., Dai X., Yuan L., Zhang L. (2021). CvT: Introducing Convolutions to Vision Transformers // https://arxiv.org/abs/2103.15808

2820

Touvron H., Cord M., Sablayrolles A., Synnaeve G., Jegou H. (2021). Going deeper with Image Transformers // https://arxiv.org/abs/2103.17239

2821

Yuan K., Guo S., Liu Z., Zhou A., Yu F., Wu W. (2021). Incorporating Convolution Designs into Visual Transformers // https://arxiv.org/abs/2103.11816

2822

Chen M., Peng H., Fu J., Ling H. (2021). AutoFormer: Searching Transformers for Visual Recognition // https://arxiv.org/abs/2107.00651

2823

Han K., Xiao A., Wu E., Guo J., Xu C., Wang Y. (2021). Transformer in Transformer // https://arxiv.org/abs/2103.00112

2824

Wang Y., Huang R., Song S., Huang Z., Huang G. (2021). Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition // https://arxiv.org/abs/2105.15075

2825

Chen X., Hsieh C.-J., Gong B. (2021). When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations // https://arxiv.org/abs/2106.01548

2826

Dai Z., Liu H., Le Q. V., Tan M. (2021). CoAtNet: Marrying Convolution and Attention for All Data Sizes // https://arxiv.org/abs/2106.04803

2827

Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. (2021). Swin Transformer V2: Scaling Up Capacity and Resolution // https://arxiv.org/abs/2111.09883

2828

Li Y., Wu C.-Y., Fan H., Mangalam K., Xiong B., Malik J., Feichtenhofer C. (2021). Improved Multiscale Vision Transformers for Classification and Detection // https://arxiv.org/abs/2112.01526

2829

Dong X., Bao J., Zhang T., Chen D., Zhang W., Yuan L., Chen D., Wen F., Yu N. (2021). PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers // https://arxiv.org/abs/2111.12710

2830

Wu S., Wu T., Tan H., Guo G. (2021). Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention // https://arxiv.org/abs/2112.14000

Очередные рекорды точности решения задач в этой области держались считаные дни, на смену трансформерам в первых строчках таблиц лидеров на paperswithcode.com вновь приходили свёрточные архитектуры (на них, по мнению некоторых исследователей [2831] , ещё рановато ставить крест), а им на смену — снова трансформеры или гибридные сети. При этом в ряде случаев достичь новой рекордной отметки помогали даже не изменения в архитектурах, а новые способы обучения или аугментации данных. На август 2023 г. первое место по top-1-точности классификации на датасете ImageNet занимает свёрточно-трансформерная архитектура BASIC-L [2832] (91,1%), обгоняя всего на 0,1% чисто трансформерную архитектуру CoCa (Contrastive Captioners, Контрастные подписыватели) [2833] . Однако к моменту выхода этой книги на верхних строчках таблицы рекордов окажутся уже, скорее всего, какие-то другие модели.

2831

Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S. (2022). A ConvNet for the 2020s // https://arxiv.org/abs/2201.03545

2832

Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2023). BASIC-L: Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

2833

CoCa: Chen X., Liang C., Huang D., Real E., Wang K., Liu Y., Pham H., Dong X., Luong T., Hsieh C.-J., Lu Y., Le Q. V. (2022). Symbolic Discovery of Optimization Algorithms // https://arxiv.org/abs/2302.06675

Поделиться:
Популярные книги

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Полуостров Надежды. Трилогия

Буторин Андрей Русланович
Вселенная Метро 2033
Фантастика:
боевая фантастика
постапокалипсис
8.00
рейтинг книги
Полуостров Надежды. Трилогия

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Пророчество: Дитя Земли

Хэйдон Элизабет
2. Симфония веков
Фантастика:
фэнтези
7.33
рейтинг книги
Пророчество: Дитя Земли

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только