Основы физиологии высшей нервной деятельности
Шрифт:
3. Повышение проницаемости и уменьшение скорости расщепления медиатора
4. Измерение соотношений скоростей синтеза компонентов или образование новых компонентов рецептора при запоминании, в дальнейшем поддержание новых отношений. Репрессия генов энзима, расщепляющего медиатор, дерепрессия генов ингибитора этого энзима
1. Локализация не установлена
2. Не известно
3. Повышение проводимости синапса за счет включения неизвестного вещества
4. Усиленный синтез веществ типа антител или других факторов межклеточного «узнавания» (например, полипептиды — коннекторы), при запоминании, в дальнейшем их обновление
Усиленный синтез некоторых антигенов компонента синапса, вызывающих образование соответствующих антител при запоминании, в дальнейшем
Анализ этих явлений нейронной активности при выработке локальной условной реакции вздрагивания приводит к выводу о том, что для синаптического проторения путей временной связи необходима кроме конвергенции сигнального и безусловного стимулов активация системы, вызывающей модификацию синапсов, что зависит от биологической значимости образования условной реакции. На изолированном нейроне виноградной улитки получены условные изменения свойств его электровозбудимой мембраны путем сочетания стимулов, приложенных к двум ее локусам, в результате чего между ними возникала временная связь.
При изучении возможных причин стойкого повышения синаптической передачи было обращено внимание на медиаторы возбуждения и прежде всего на ацетилхолин. Найдено, что обучение сопровождается повышением активности фермента холинэстеразы, разрушающей ацетилхолин, а вещества, подавляющие действие холинэстеразы, вызывают нарушения памяти. В опытах с обучением крыс доставать пищу из узкой трубки определенной передней конечностью активность холинэстеразы возрастала только в контралатеральном полушарии, что подтверждает ее значение в формировании памятных следов.
Сопоставление данных о взаимосвязанной динамике ацетилхолина и холинэстеразы привело к заключению, что повышенная проводимость может возникать и устойчиво поддерживаться некоторым равновесным отношением их синтеза. Избыточная активность холинэстеразы без возрастания количества ацетилхолина не позволяет ему достичь концентрации, необходимой для деполяризации постсинаптической мембраны синапса, а увеличение количества ацетилхолина при малой активности холинэстеразы приводит к глубокой неколеблющейся деполяризации — в обоих случаях проведение импульсов через синапс оказывается блокированным. Существует предположение, что ацетилхолин может транспортироваться через синаптическую щель по транссинаптическим тяжам, которые образуются из соединения белковых мицелл, формирующихся на поверхности пре- и постсинаптической мембран.
Кроме холинэргических имеются и иные синапсы, где медиаторами служат другие вещества. С учетом всех этих сведений была составлена обобщенная схема стойкого облегчения медиаторных процессов в синапсе. На рис. 24, А показано исходное состояние синапсов. Если возбуждение пресинаптического нейрона (рис. 24, Б) вызывает усиленное выделение медиатора, а возбуждение постсинаптического — разрушающего медиатор фермента (рис. 24, В), то при сочетаниях условного и безусловного раздражителей происходит конвергенция импульсных потоков на синапсах (рис. 24, Г), которая обусловливает оптимальный баланс активности медиатора и разрушающего его фермента на стабильном высоком уровне, а также активацию сети белковых тяжей, уменьшающих просвет синаптической щели (рис. 24, Д). Показано, что повышение эффективности синапсов сопровождается конформационными изменениями мембранных белков, специфичными для синаптических мембран.
Рис. 24. Развитие процессов стойкого облегчения проводимости сигнала (объяснение см. в тексте) (по В.В. Дергачеву):
кружками обозначены везикулы медиатора, треугольниками — фермент, расцепляющий медиатор
Долгосрочная память как стойкое изменение химизма нервных клеток.
Так как основным субстратом функциональных структур нейрона являются белковые соединения, а их различные модификации задаются матрицами РНК, на которых они синтезируются, то была выдвинута гипотеза о том, что информация, входящая в долгосрочную память, «записывается» структурой полинуклеотидной цепи молекулы (X. Хиден, 1959). По этой гипотезе разные условные потоки импульсов создают различное распределение ионных концентраций вдоль молекулы РНК и вызывают специфические для каждого сигнала перемещения нуклеотидов в их цепи. В результате каждый сигнал получает определенный отпечаток в структуре молекулы РНК. Поскольку структура молекулы РНК является матрицей для синтеза белковых соединений, специфические белки и медиаторы могут синтезироваться лишь по тому сигналу, который сформировал эту матрицу своим импульсным потоком. Все возможные перестановки и комбинации нуклеотидных элементов позволяют зафиксировать в молекулах РНК громадное количество информации. По приблизительному подсчету их информационная емкость достигает 1015–1020 бит, что перекрывает объем человеческой памяти.
В качестве экспериментального подтверждения гипотезы о переопределении нуклеотидов в молекуле РНК как механизме формирования долгосрочной памяти могут служить результаты опытов с крысами, которые обучались добираться к пище, балансируя на проволочном мостике (табл. 4).
Таблица 4. Процентное содержание нуклеотидов в РНК ядра Дейтерса при выработке двигательного навыка у крыс (по X. Хидену, Е. Эльхази)
Как показывает табл. 4, у крыс, обучившихся сложным движениям, в нервных клетках ядра Дейтерса, ответственного за выполнение нового двигательного навыка, произошло изменение нуклеотидного состава РНК клеточного ядра. Увеличилась доля аденина, уменьшилась доля урацила. Простое вестибулярное раздражение не изменяло нуклеотидный состав. Исследование глиальных клеток ядра Дейтерса выявило сходные изменения РНК, что позволило сделать предположение об участии глии в кодировании поступающих сигналов путем изменения структуры нуклеотидных цепей РНК.
Однако гипотеза о нуклеотидном коде памятного следа встретилась со многими затруднениями, из которых главное — недолговечность молекул РНК. Выполняя информационные и транспортные функции, они могут сохранять свою структуру лишь в течение короткого времени, не соизмеримого с длительностью долгосрочной памяти. Эти и другие возражения ставят под сомнение РНК как носителя долгосрочного памятного следа, с чем, в сущности, согласился сам автор нуклеотидной гипотезы (X. Хиден, 1969).
В связи с этим внимание исследователей обратилось к более долговечным химическим компонентам структурно-функциональной организации нервной клетки. Памятный след стали искать в генетическом аппарате, который управляет деятельностью нервной клетки и определяет свойства на протяжении всей ее жизни. Наиболее стабильной структурой генетического аппарата являются молекулы ДНК, в которых кодируется наследственная информация. Логично было думать, что и информация, приобретаемая в течение жизни фиксируется этими структурами, специально приспособленными к хранению информационных программ. Поэтому были предприняты исследования ДНК как носителя долговременной памяти.