Основы графического дизайна на базе компьютерных технологий
Шрифт:
Изображение, представленное на экране компьютера в серой гамме, может содержать 256 оттенков серого. В этом случае один пиксел кодируется восемью битами и значение яркости изменяется от черного (кодируется обычно нулем) до белого (255).
Простейшие цветные изображения передаются с помощью так называемых индексированных цветов (Indexed Color). Каждый цвет кодируется 8 битами, а всего изображение может содержать 256 различных цветов (24-битные описания которых хранятся в специальной таблице, палитре). Именно с такой ограниченной гаммой цветов работали первые цветные мониторы. Для полиграфического воспроизведения индексированные цвета едва ли можно рекомендовать (слишком мало оттенков), а вот для Web-страниц они вполне
Современные компьютеры для создания полноцветных изображений на мониторе используют цветовую модель RGB, в которой на цвет каждого пиксела отводится обычно 24 бита. Рассмотрим подробнее эту цветовую модель.
На экране электронно-лучевой трубки цвета создаются в результате бомбардировки люминофора (фосфоресцирующего материала) тремя электронными лучами. При этом, каждая точка изображения состоит из трех цветных точек: красной, синей и зеленой. Электронные лучи различной интенсивности высвечивают разные точки и «картинка» приобретает цвет в результате сложения трех составляющих. Смешение красного и зеленого цвета дает желтый, зеленого и синего – голубой, красного и синего – пурпурный цвет. Черный цвет получается, когда интенсивность всех трех составляющих равна нулю, белый – при сложении всех трех цветов максимальной интенсивности. Это называется аддитивной (суммирующей) моделью RGB: Red – красный, Green – зеленый, Blue – голубой. В современных компьютерах воспроизводится 256 (от 0 до 255) значений каждого из трех цветов, следовательно, общее количество возможных цветов на мониторе – порядка 16.7 млн.
Результирующий цвет зависит от того, какое количество каждой из цветовых компонент присутствует на изображении. Например, для получения одного из оттенков желтого цвета необходима следующая комбинация: R = 255, G = 236, В = 103. Белый цвет получается, если значение каждой из трех компонент равно 255.
Цветовое тело модели RGB имеет форму куба, расположенного в трехмерной системе координат (рис. ЦВ-2.60). Все цветовое пространство находится внутри этого куба. В точке пересечения координатных осей все составляющие равны нулю, излучение отсутствует, следовательно, это точка черного. Три вершины куба, лежащие на осях, представляют собой чистые основные цвета. Каждая из трех вершин, лежащих в плоскостях осей координат, определяет цвет, полученный при смешении двух составляющих. Эти вершины (в теории) соответствуют желтому, голубому и пурпурному цветам. Последняя вершина куба, не лежащая ни в одной из плоскостей и соответствующая координате с максимальным значением каждого основного цвета, является точкой белого. На диагонали, расположенной между вершинами белого и черного цвета, расположены все оттенки серого.
Итак, каждый цвет, передаваемый монитором, можно описать с помощью набора цифр. Конечно, технические трудности существуют. Например, цветопередача в значительной степени зависит от качества и настройки монитора, трудно получить чистый голубой цвет и т. д. Для достижения оптимального результата применяется цветокоррекция – изменение параметров изображения: яркости, контрастности, цветового тона, насыщенности.
Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны!
При переносе цветного изображения на бумагу используется совершенно другая цветовая модель – субтрактивная («вычитательная»). При печати на бумагу наносится краска – материал, который поглощает и отражает световые волны различной длины; иными словами, краску можно рассматривать как фильтр, который пропускает строго определенные лучи отраженного света, вычитая все остальные. В полиграфии для получения полноцветного изображения применяется технология четырехкрасочной печати с использованием голубой, пурпурной, желтой и черной красок. Эти краски в полиграфии называются триадными. Субтрактивный синтез цветов
Для того чтобы усилить на изображении какой-либо цвет, нужно ослабить его дополнительный, расположенный в цветовом круге напротив. Например, для усиления синего тона снижают содержание желтого.
Итак, физическая природа цвета на мониторе и на бумаге различна. Это приводит к тому, что диапазон цветов в каждом случае разный. Самый большой спектр цветов, естественно, в природе. Он ограничен только возможностями зрения человека (например, мы не воспринимаем без специальных устройств инфракрасное излучение). Современные мониторы могут передавать достаточно много цветов, но некоторые цвета, например чистые голубой и желтый, на экране воспроизвести нельзя. Часть из того, что воспроизводит монитор можно напечатать, но технические возможности накладывают дополнительные ограничения на цвет.
Таким образом, множества воспроизводимых цветов (цветовой охват) RGB и CMYK моделей различны. Охват модели RGB меньше видимого спектра, но полнее охвата модели CMYK. При работе за компьютером доступны цвета, которые невозможно воспроизвести при печати, и цвет на экране никогда не будет точно совпадать с цветом на бумаге. Кстати, у реальных устройств, будь то мониторы или полиграфическое оборудование, цветовой охват еще меньше, чем предписан им соответствующей цветовой моделью. На отображаемый монитором цвет влияют качество люминофора, освещение помещения и наличие защитного экрана. Воспроизведение же цвета на бумаге зависит от совершенно других факторов: от цвета и фактуры бумаги, химического состава и качества красок.
Точное воспроизведение цвета – одна из основных проблем компьютерной графики и полиграфии. Цифровые изображения приходят из разных источников – из сети Интернет, со сканеров, с цифровых фотокамер, захватом кадров телевидения. После обработки «картинка» передается для просмотра, редактирования или печати. В этом процессе одной из главных проблем является обеспечение цветового соответствия. Каждый сканер, цифровая фотокамера, монитор, принтер или другое цветовоспроизводящее оборудование регистрирует или отображает цвет по-своему, т. е. точность воспроизведения цвета во многом зависит от технических характеристик устройства.
Мы рассмотрели только две основные модели цветов, на самом деле их гораздо больше. CorelDRAW поддерживает 8 цветовых моделей, Photoshop еще больше, причем выбор цветовой модели зависит от конкретной ситуации.
Рассмотрим еще одну компьютерную цветовую модель – HSB. Она упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Все цвета определяются тремя параметрами: цветовым тоном, насыщенностью и яркостью.
Модель HSB (рис. ЦВ 2-62) приблизительно соответствует пространственной цветовой модели. Цветовой тон (Hue) характеризуется положением на цветовом круге и определяется величиной угла в диапазоне от 0 до 360 градусов. По краю круга располагаются цвета максимальной насыщенности.
Насыщенность (Saturation) – это чистота цвета. Тем менее насыщен цвет, тем больше в нем содержится серого. При средней яркости в центре круга находится средне-серый цвет. Насыщенность измеряется в процентах содержания серого и изменяется от 0 до 100.