Основы объектно-ориентированного программирования
Шрифт:
Переопределим, соответственно, и аргумент процедуры share. Более полный вариант класса теперь выглядит так:
Аналогично
Рис. 17.5. Иерархия участников и повторные определения
Так как наследование является специализацией, то правила типов требуют, чтобы при переопределении результата компонента, в данном случае roommate, новый тип был потомком исходного. То же касается и переопределения типа аргумента other подпрограммы share. Эта стратегия, как мы знаем, именуется ковариантностью, где приставка "ко" указывает на совместное изменение типов параметра и результата. Противоположная стратегия называется контравариантностью.
Все наши примеры убедительно свидетельствуют о практической необходимости ковариантности.
[x]. Элемент односвязного списка LINKABLE должен быть связан с другим подобным себе элементом, а экземпляр BI_LINKABLE– с подобным себе. Ковариантно потребуется переопределяется и аргумент в put_right.
[x]. Всякая подпрограмма в составе LINKED_LIST с аргументом типа LINKABLE при переходе к TWO_WAY_LIST потребует аргумента BI_LINKABLE.
[x]. Процедура set_alternate принимает DEVICE– аргумент в классе DEVICE и PRINTER– аргумент - в классе PRINTER.
Ковариантное переопределение получило особое распространение потому, что скрытие информации ведет к созданию процедур вида
для работы с attrib типа SOME_TYPE. Подобные процедуры, естественно, ковариантны, поскольку любой класс, который меняет тип атрибута, должен соответственно переопределять и аргумент set_attrib. Хотя представленные примеры укладываются в одну схему, но ковариантность распространена значительно шире. Подумайте, например, о процедуре или функции, выполняющей конкатенацию односвязных списков (LINKED_LIST). Ее аргумент должен быть переопределен как двусвязный список (TWO_ WAY_LIST). Универсальная операция сложения infix "+" принимает NUMERIC– аргумент в классе NUMERIC, REAL– в классе REAL и INTEGER– в классе INTEGER. В параллельных иерархиях телефонной службы процедуре start
Рис. 17.6. Службы связи
Что можно сказать о контравариантном решении? В примере с лыжниками оно означало бы, что если, переходя к классу RANKED_GIRL, тип результата roommate переопределили как RANKED_GIRL, то в силу контравариантности тип аргумента share можно переопределить на тип GIRL или SKIER. Единственный тип, который не допустим при контравариантном решении, - это RANKED_GIRL! Достаточно, чтобы возбудить наихудшие подозрения у родителей девушек.
Параллельные иерархии
Чтобы не оставить камня на камне, рассмотрим вариант примера SKIER с двумя параллельными иерархиями. Это позволит нам смоделировать ситуацию, уже встречавшуюся на практике: TWO_ WAY_LIST > LINKED_LIST и BI_LINKABLE > LINKABLE; или иерархию с телефонной службой PHONE_SERVICE.
Пусть есть иерархия с классом ROOM, потомком которого является GIRL_ROOM (класс BOY опущен):
Рис. 17.7. Лыжники и комнаты
Наши классы лыжников в этой параллельной иерархии вместо roommate и share будут иметь аналогичные компоненты accommodation (размещение) и accommodate (разместить):
Здесь также необходимы ковариантные переопределения: в классе GIRL1 как accommodation, так и аргумент подпрограммы accommodate должны быть заменены типом GIRL_ROOM, в классе BOY1– типом BOY_ROOM и т.д. (Не забудьте: мы по-прежнему работаем без закрепления типов.) Как и в предыдущем варианте примера, контравариантность здесь бесполезна.
Своенравие полиморфизма
Не довольно ли примеров, подтверждающих практичность ковариации? Почему же кто-то рассматривает контравариантность, которая вступает в противоречие с тем, что необходимо на практике (если не принимать во внимание поведения некоторых молодых людей)? Чтобы понять это, рассмотрим проблемы, возникающие при сочетании полиморфизма и стратегии ковариантности. Придумать вредительскую схему несложно, и, возможно, вы уже создали ее сами: