Чтение онлайн

на главную - закладки

Жанры

Основы объектно-ориентированного программирования

Мейер Бертран

Шрифт:

[x]. Сущность является потенциально полиморфной: сейчас или позднее она (посредством передачи параметров или путем присваивания) может быть присоединена к объекту, чей тип отличается от объявленного. Исходный тип сущности не сможет изменить ни один потомок класса.

[x]. Сущность является субъектом переопределения типов, то есть она либо закреплена, либо сама является опорным элементом.

Но как разработчик может все это предвидеть? Вся привлекательность ОО-метода во многом выраженная в принципе Открыт-Закрыт как раз и связана с возможностью изменений, которые мы вправе внести в ранее сделанную работу, а также с тем, что разработчик универсальных решений не должен обладать бесконечной мудростью, понимая, как его продукт смогут адаптировать к своим нуждам потомки.

При

таком подходе переопределение типов и скрытие потомком - своего рода "предохранительный клапан", дающий возможность повторно использовать существующий класс, почти пригодный для достижения наших целей:

[x]. Прибегнув к переопределению типов, мы можем менять объявления в порожденном классе, не затрагивая оригинал. При этом чисто ковариантное решение потребует правки оригинала путем описанных преобразований.

[x]. Скрытие потомком защита от многих неудач при создании класса. Можно критиковать проект, в котором RECTANGLE, используя тот факт, что он является потомком POLYGON, пытается добавить вершину. Взамен можно было бы предложить структуру наследования, в которой фигуры с фиксированным числом вершин отделены от всех прочих, и проблемы не возникало бы. Однако при разработке структур наследования предпочтительнее всегда те, в которых нет таксономических исключений. Но можно ли их полностью устранить? Обсуждая ограничение экспорта в одной из следующих лекций, мы увидим, что подобное невозможно по двум причинам. Во-первых, это наличие конкурирующих критериев классификации. Во-вторых, вероятность того, что разработчик не найдет идеального решения, даже если оно существует.

Желая сохранить гибкость адаптации порожденных классов для наших нужд, мы должны разрешить и ковариантное переопределение типов, и скрытие потомком. Далее мы узнаем, как этого добиться.

Глобальный анализ

Этот раздел посвящен описанию промежуточного подхода. Основные практические решения изложены в лекции 17.

Изучая вариант с закреплением, мы заметили, что его основной идеей было разделение ковариантного и полиморфного наборов сущностей. Так, если взять две инструкции вида

s := b ...

s.share (g)

каждая из них служит примером правильного применения важных ОО-механизмов: первая - полиморфизма, вторая - переопределения типов. Проблемы начинаются при объединении их для одной и той же сущности s. Аналогично:

p := r ...

p.add_vertex (...)

проблемы начинаются с объединения двух независимых и совершенно невинных операторов.

Ошибочные вызовы ведут к нарушению типов. В первом примере полиморфное присваивание присоединяет объект BOY к сущности s, что делает g недопустимым аргументом share, так как она связана с объектом GIRL. Во втором примере к сущности r присоединяется объект RECTANGLE, что исключает add_vertex из числа экспортируемых компонентов.

Вот и идея нового решения: заранее - статически, при проверке типов компилятором или иными инструментальными средствами - определим набор типов (typeset) каждой сущности, включающий типы объектов, с которыми сущность может быть связана в период выполнения. Затем, опять же статически, мы убедимся в том, что каждый вызов является правильным для каждого элемента из наборов типов цели и аргументов.

В наших примерах оператор s := b указывает на то, что класс BOY принадлежит набору типов для s (поскольку в результате выполнения инструкции создания create b

он принадлежит набору типов для b). GIRL, ввиду наличия инструкции create g, принадлежит набору типов для g. Но тогда вызов share будет недопустим для цели s типа BOY и аргумента g типа GIRL. Аналогично RECTANGLE находится в наборе типов для p, что обусловлено полиморфным присваиванием, однако, вызов add_vertex для p типа RECTANGLE окажется недопустимым.

Эти наблюдения наводят нас на мысль о создании глобального подхода на основе нового правила типизации:

Правило системной корректности

Вызов x.f (arg) является системно-корректным, если и только если он классово-корректен для x, и arg, имеющих любые типы из своих соответствующих наборов типов.

В этом определении вызов считается классово-корректным, если он не нарушает правила Вызова Компонентов, которое гласит: если C есть базовый класс типа x, компонент f должен экспортироваться C, а тип arg должен быть совместим с типом формального параметра f. (Вспомните: для простоты мы полагаем, что каждый подпрограмма имеет только один параметр, однако, не составляет труда расширить действие правила на произвольное число аргументов.)

Системная корректность вызова сводится к классовой корректности за тем исключением, что она проверяется не для отдельных элементов, а для любых пар из наборов множеств. Вот основные правила создания набора типов для каждой сущности:

1 Для каждой сущности начальный набор типов пуст.

2 Встретив очередную инструкцию вида create {SOME_TYPE} a, добавим SOME_TYPE в набор типов для a. (Для простоты будем полагать, что любая инструкция create a будет заменена инструкцией create {ATYPE} a, где ATYPE– тип сущности a.)

3 Встретив очередное присваивание вида a := b, добавим в набор типов для a все элементы набора типов для b.

4 Если a есть формальный параметр подпрограммы, то, встретив очередной вызов с фактическим параметром b, добавим в набор типов для a все элементы набора типов для b.

5 Будем повторять шаги (3) и (4) до тех пор, пока наборы типов не перестанут изменяться.

Данная формулировка не учитывает механизма универсальности, однако расширить правило нужным образом можно без особых проблем. Шаг (5) необходим ввиду возможности цепочек присваивания и передач (от b к a, от c к b и т. д.). Нетрудно понять, что через конечное число шагов этот процесс прекратится.

Число шагов ограничено длиной максимальной цепочки присоединений; другими словами максимум равен n, если система содержит присоединения от xi+1 к xi для i=1, 2, ... n-1. Повторение шагов (3) и (4) известно как метод "неподвижной точки".
Поделиться:
Популярные книги

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Очкарик 2

Афанасьев Семен
2. Очкарик
Фантастика:
фэнтези
альтернативная история
5.00
рейтинг книги
Очкарик 2

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Барон Дубов 6

Карелин Сергей Витальевич
6. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 6

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Тринадцатый XI

NikL
11. Видящий смерть
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Тринадцатый XI

Доктор 5

Афанасьев Семён
5. Доктор
Фантастика:
фэнтези
альтернативная история
5.00
рейтинг книги
Доктор 5

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Эволюционер из трущоб. Том 6

Панарин Антон
6. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эволюционер из трущоб. Том 6

Барон Дубов 3

Карелин Сергей Витальевич
3. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 3

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Ведунские хлопоты

Билик Дмитрий Александрович
5. Бедовый
Фантастика:
юмористическое фэнтези
городское фэнтези
мистика
5.00
рейтинг книги
Ведунские хлопоты