Основы объектно-ориентированного программирования
Шрифт:
Оригинальность языка C++ в том, что он использует стратегию безвариантности (novariance), не позволяя менять тип аргументов в переопределяемых подпрограммах! Если бы язык C++ был строго типизированным языком, его системной типов было бы трудно пользоваться. Простейшее решение проблемы в этом языке, как и обход иных ограничений C++ (скажем, отсутствия ограниченной универсальности), состоит в использовании кастинга - приведения типа, что позволяет полностью игнорировать имеющийся механизм типизации. Это решение не кажется привлекательным. Заметим, однако, что ряд предложений, обсуждаемых ниже, будет опираться на безвариантность,
Использование родовых параметров
Универсальность лежит в основе интересной идеи, впервые высказанной Францем Вебером (Franz Weber). Объявим класс SKIER1, ограничив универсализацию родового параметра классом ROOM:
Тогда класс GIRL1 будет наследником SKIER1 [GIRL_ROOM] и т. д. Тем же приемом, каким бы странным он не казался на первый взгляд, можно воспользоваться и при отсутствии параллельной иерархии: class SKIER [G -> SKIER].
Этот подход позволяет решить проблему ковариантности. При любом использовании класса необходимо задать фактический родовой параметр ROOM или GIRL_ROOM, так что неверная комбинация просто становится невозможной. Язык становится безвариантным, а система полностью отвечает потребностям ковариантности благодаря родовым параметрам.
К сожалению, эта техника неприемлема как общее решение, поскольку ведет к разрастанию списка родовых параметров, по одному на каждый тип возможного ковариантного аргумента. Хуже того, добавление ковариантной подпрограммы с аргументом, тип которого отсутствует в списке, потребует добавления родового параметра класса, а, следовательно, изменит интерфейс класса, повлечет изменения у всех клиентов класса, что недопустимо.
Типовые переменные
Ряд авторов, среди которых Ким Брюс (Kim Bruce), Дэвид Шенг (David Shang) и Тони Саймонс (Tony Simons), предложили решение на основе типовых переменных (type variables), значениями которых являются типы. Их идея проста:
[x]. взамен ковариантных переопределений разрешить объявление типов, использующее типовые переменные;
[x]. расширить правила совместимости типов для управления такими переменными;
[x]. считать язык (в остальном) безвариантным;
[x]. обеспечить возможность присваивания типовым переменным в качестве значений типы языка.
Подробное изложение этих идей читатели могут найти в ряде статей по данной тематике, а также в публикациях Карделли (Cardelli), Кастаньи (Castagna), Вебера (Weber) и др. Начать изучение вопроса можно с источников, указанных в библиографических заметках к этой лекции. Мы же не будем заниматься этой проблемой, и вот почему.
[x].
[x]. Предположим, что разработан механизм типовых переменных, способный преодолеть проблемы объединения ковариантности и полиморфизма (все еще игнорируя проблему скрытия потомком). Тогда от разработчика классов потребуется незаурядная интуиция для того, чтобы заранее решить, какие из компонентов будут доступны для переопределения типов в порожденных классах, а какие - нет. Ниже мы обсудим эту проблему, имеющую место в практике создания программ и, увы, ставящую под сомнение применимость многих теоретических схем.
Это заставляет нас вернуться к уже рассмотренным механизмам: ограниченной и неограниченной универсальности, закреплению типов и, конечно, наследованию.
Полагаясь на закрепление типов
Почти готовое решение проблемы ковариантности мы найдем, присмотревшись к известному нам механизму закрепленных объявлений.
При описании классов SKIER и SKIER1 вас не могло не посетить желание, воспользовавшись закрепленными объявлениями, избавиться от многих переопределений. Закрепление - это типичный ковариантный механизм. Вот как будет выглядеть наш пример (все изменения подчеркнуты):
Теперь потомки могут оставить класс SKIER без изменений, а в SKIER1 им понадобится переопределить только атрибут accommodation. Закрепленные сущности: атрибут roommate и аргументы подпрограмм share и accommodate– будут изменяться автоматически. Это значительно упрощает работу и подтверждает тот факт, что при отсутствии закрепления (или другого подобного механизма, например, типовых переменных) написать ОО-программный продукт с реалистичной типизацией невозможно.