Чтение онлайн

на главную - закладки

Жанры

Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:

Однако Фраунгофер не был профессиональным физиком или химиком и не стал заниматься поиском связи спектральных линий с химическим составом вещества. Он остановился на том, что спектры планет похожи на солнечный, а спектры звезд отличаются от него и иногда довольно сильно. Физико-химические же исследования начались заметно позднее.

В 1854 году в Гейдельберг переехал физик Густав Роберт Кирхгоф (1824-1887), чтобы помочь профессору химии Роберту Вильгельму Бунзену (1811 - 1899) в осуществлении большой программы по анализу состава газов. Следствием этой работы стало создание спектрального анализа. Благодаря

удачному решению ряда чисто технических проблем Бунзен и Кирхгоф сумели очень точно описать всю видимую часть солнечного спектра и связать многие наблюдаемые линии с конкретным химическим составом нашего светила. Они обнаружили более 20 элементов, входящих в атмосферу Солнца.

Теперь стал виден ясный путь к пониманию состава небесных тел. Значимость работы Кирхгофа и Бунзена, частично подытоженной в книге "Химический анализ посредством наблюдений спектров" (1860), сравнима только с галилеевскими наблюдениями неоднородностей Луны и Солнца. Спектры открыли дверь и в атомно-молекулярный мир. В течение следующего полувека из их исследований выросла атомная физика. И именно анализ спектров привел в 20 столетии к появлению модели расширяющейся Вселенной. Но эти достижения еще впереди, а тогда стало ясно, что перед астрономией и физикой лежит необъятное море новой работы. Необходимо было получить и проанализировать спектральные портреты тысяч и тысяч звезд.

Так рождалась современная астрофизика.

Спектры сыграли выдающуюся роль и в определении геометрических параметров Вселенной в самых больших масштабах. Определение расстояний до звезд и их скоростей, несмотря на всевозрастающую мощность телескопов, оставалось довольно серьезной проблемой. Старые геометрические методы, блестяще оправдавшие себя при измерениях Солнечной системы, оказались беспомощными при обращении к очень далеким объектам. Даже самыми современными средствами невозможно обнаружить параллакс звезды, удаленной более чем на 100 световых лет, а, следовательно, нет прямого геометрического способа измерить расстояние и скорость.

Выход был найден в связи с работами австрийского физика и астронома Кристиана Допплера (1803-1853). В 1842 году он установил, что частота волнового процесса должна зависеть от скорости и направления движения источника. В соответствии с идеей Допплера, относительный сдвиг частоты приблизительно определяется отношением скорости источника к скорости распространения сигнала (звука или света): ??/?0 = +- v/c, где ?0 - частота для покоящегося источника, а знак выбирается в зависимости от направления движения источника. По правилу: + к нам, - от нас, т. е. частота убегающего источника уменьшается (красное смещение), а приближающегося - увеличивается (фиолетовое смещение).

Этот эффект, довольно легко наблюдаемый в акустике, трудно уловить в оптике, если скорость источника существенно меньше скорости света. Но именно так обстоит дело со звездами.

Лишь в 1868 году оптический допплер-эффект был обнаружен английским астрономом Уильямом Хэггинсом (1824 - 1910), изучавшим спектр Сириуса в своей частной обсерватории. Спектральные линии стали для Хэггинса своеобразными метками - именно их небольшое смещение позволило оценить скорость Сириуса*. Впоследствии для самых далеких объектов удалось связать между собой задачи определения скоростей и расстояний до них,

и допплер-эффект стал надежным космологическим методом.

*Хэггинсу принадлежит заслуга в первичной спектральной классификации туманностей. Некоторые из них давали очень скудный спектр, т. е. были чисто газовыми образованиями. Туманность Андромеды имела спектр, в общем-то, близкий к звездному, и Хэггинс понял, что имеет дело с гигантским скоплением звезд.

Стоит добавить, что пионерские работы по астроспектроскопии (Кирхгоф, Бунзен, Хэггинс и другие) проводились без применения фотографии. Дело такого рода в смысле объема и качества полученного материала - истинный подвиг.

В истории внедрения спектрального анализа в астрономические исследования ясно чувствуется глубочайшая взаимосвязь в развитии различных областей познания. В сущности, излагая эволюцию астрофизических концепций, следовало бы параллельно давать картину развития наших представлений о веществе вдоль тех же исторических и философских вех... Скажем, возрождение атомизма связано с философией французского математика и теолога Пьера Гассенди (1592 - 1655), отделившего пространство и время от Бога и указавшего на внутренне присущие атомам свойства взаимодействия. Его концепции оказали огромное влияние на Ньютона и многих других английских физиков и философов. Это видно и в идее планет как центров тяготения, и в идее корпускул света. Наконец, это предопределило ньютоновскую модель абсолютного пространства-вместилища, а впоследствии и необходимость преодоления этой модели.

На протяжении нескольких столетий на небо обрушились все лучшие достижения физики, полученные в земных лабораториях. Этот процесс привел к совершенно новому взгляду на Вселенную, подготовил почву для резкого взлета в ее постижении, произошедшего уже в нашем веке. Этот прогресс воистину поразителен, если сопоставить видение Космоса как главным образом духовной категории, скажем, в "Божественной комедии" у Данте с сугубо материалистическим его восприятием на рубеже 19- 20 веков, когда едва ли не все принципиальные проблемы представлялись решенными или, во всяком случае, не слишком сложными.

ОТКРЫТИЕ ЗВЕЗД

В период становления научной астрономии звездам не очень повезло. С 15 и до середины 19 столетия главное внимание уделялось планетам Солнечной системы. В мире звезд велась в основном предварительная регистрационная работа.

Росла мощность телескопов, и вместе с этим лавинообразно нарастало количество вновь открываемых звезд. Это и неудивительно - невооруженным глазом можно видеть звезды до 6-й величины включительно, а их на всем небе около 4800. Зато в интервале до 10-звездной величины их уже 350 тысяч, а до 20-й величины - миллиард. Так что астрономия столкнулась со своеобразным информационным взрывом.

Однако коллекция в миллион бабочек еще не творит биологии.

Звезд было много, но об их природе к середине 19-го века высказывались лишь очень смутные догадки. Астрономы не слишком ясно представляли себе даже расстояния, на которых расположены эти звезды... Разумеется, после работы Галлея никто не считал, что они принадлежат какой-то неподвижной хрустальной сфере, но и сколь-нибудь ясной картины, напоминающей великолепное полотно Солнечной системы образца Ньютона - Лапласа, не существовало.

Поделиться:
Популярные книги

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Повелитель механического легиона. Том VI

Лисицин Евгений
6. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VI

Фронтовик

Поселягин Владимир Геннадьевич
3. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Фронтовик

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Имперский Курьер. Том 4

Бо Вова
4. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 4

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12