Чтение онлайн

на главную - закладки

Жанры

Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:

О первоначальном замешательстве в связи с этим открытием свидетельствует тот факт, что все четыре пульсара были закодированы как LGM1, LGM2 и т. д. (от Little Green Men - буквально "зеленые человечки"), иными словами, группа Хьюиша с немалой вероятностью допускала, что получено сообщение от внеземной цивилизации. Образ - дань модной традиции, согласно которой экипажи летающих тарелок, о которых ходило немало слухов (и ходит до сих пор!), состоят из каких-то небольших зеленых существ. Однако после публикации первой заметки в феврале 1968 года (журнал "Nature") туман быстро рассеялся. Открытия Кембриджской группы были подтверждены другими радиообсерваториями, до конца 1968 года поступили сообщения о добром десятке других пульсаров. В 1969 году выяснилось, что пульсаром является и звезда Бааде - Минковского в Крабовидной туманности.

Природу

исходного удивления понять не так уж сложно. Астрономические объекты, способные изменять свое состояние в целом за 1 секунду,- явление, по крайней мере, странное. Они должны иметь очень малые размеры и, с этой точки зрения, похожи на какие-то искусственные сооружения. Единственный выход - считать, что объект со светимостью звездного уровня и малым радиусом (порядка 10 км) представляет собой настоящую нейтронную звезду.

Сначала думали, что всплески излучения действительно обусловлены пульсацией нейтронной звезды. Теория позволяла объяснить такой моделью периоды до 1 - 2 секунд, но в том же Крабе пульсар PSR0531 + 21 продемонстрировал период 0,033 с, что потребовало совершенно новых идей по поводу механизма излучения.

Пульсар представляет собой быстро вращающуюся нейтронную звезду с чрезвычайно сильным (до 1012 Гаусс) магнитным полем. Излучение концентрируется вблизи магнитных полюсов, которые и носятся вокруг оси вращения с определенным периодом. Можно сказать, что с наблюдаемыми пульсарами нам повезло - эти импульсные маяки удачно сориентированы относительно Солнечной системы.

МОДЕЛЬ ПУЛЬСАРА

Очень интересной особенностью новых объектов оказалась их довольно быстрая эволюция. Видимо, периоды всех пульсаров возрастают - энергия вращения понемногу теряется. Самые молодые пульсары вращаются быстрее, и темп потери угловой скорости у них несколько выше. Пример тому - самый быстрый пульсар PSR 0531+21, который увеличивает период на 36,5 наносекунд в сутки*. Вероятно, теоретически возможный период обращения не может быть меньше 0,001 с. Если считать, что рост начинается именно от этой величины, то с учетом более высокого начального темпа следует признать возраст этого пульсара порядка 1000 лет. Это хорошо согласуется с датой вспышки Сверхновой в Крабе в 1054 году.

*Осенью 1982 года был обнаружен пульсар 1937 + 215 в созвездии Лисичка с периодом Т = 1,56. 10-3 с, т. е. вращающийся в двадцать с лишним раз быстрее пульсара в Крабе.

Более сложные явления отмечены для пульсаров, входящих в состав двойных систем с обычными звездами. Гравитационное поле нейтронной звезды начинает как бы отсасывать плазму из атмосферы своей соседки. Первоначально мощное магнитовращательное излучение отбрасывает эту плазму, и пульсар дополнительно теряет угловой момент. Эта стадия эволюции называется "пропеллером" - увеличение периода здесь происходит быстрее, чем в случае одинокого пульсара. Но с увеличением периода падает и мощность магнитного маяка. Наконец, начинается процесс аккреции - плазма захватывается пульсаром и передает ему свой угловой момент. Теперь рост периода должен прекратиться - согласно теории возникает своеобразная компенсация, и вращение происходит более или менее равномерно.

Это так называемая стадия рентгеновского пульсара, характерная мощным рентгеновским излучением аккрецирующей плазмы (светимость порядка 1030-1031 Вт!). Источники такого типа действительно обнаружены, но все они имеют уже уменьшающийся период - струя вещества с соседней звезды как бы ускоряет пульсар. Это указывает на новое замечательное качество нейтронных звезд видимо, они служат превосходным индикатором эволюции соседей по двойной системе.

Но сюрпризы, связанные с нейтронными звездами, не ограничились пульсарами. Через 8 лет после их открытия один из советских спутников серии "Космос" зарегистрировал очень мощные и нерегулярные вспышки рентгеновского излучения. Более подробные исследования показали, что некие объекты нашей Галактики, расположенные ближе к ее центру, дают пиковую мощность излучения более 1031 Ватт, причем интервалы между вспышками довольно различны - от нескольких часов до целых месяцев. Так на астрофизической арене появились барстеры (от англ, burst - вспышка, быстрый взрыв) - нейтронные звезды, входящие в тесную двойную систему.

СХЕМА АККРЕЦИИ В ТЕСНОЙ ДВОЙНОЙ СИСТЕМЕ ОБЫЧНОЙ И КОМПАКТНОЙ ЗВЕЗДЫ (В

ЧАСТНОСТИ, АККРЕЦИИ НА ПУЛЬСАР ИЛИ ЧЕРНУЮ ДЫРУ)

В отличие от пульсаров, они лишены мощного магнитного поля, которое как бы засасывает заряженные частицы к магнитным полюсам. Поэтому аккрецирующая водородно-гелиевая

плазма от соседней звезды более или менее равномерно устремляется к барстеру, формируя на его поверхности гигантский термоядерный котел. Падающее вещество разгоняется в поле тяготения барстера до околосветовых скоростей. За счет перехода кинетической энергии этого вещества в тепловую форму и выгорания водорода поджигается термоядерная реакция синтеза гелия в углерод. Именно гелиевый синтез и обеспечивает грандиозные вспышки. В одной вспышке барстера полностью выгорает примерно метровый слой спрессованного до 1 тонны в куб. сантиметре гелия, слой, окутывающий нейтронную звезду радиусом порядка 10 км. Нетрудно оценить, что масса такого слоя порядка 1021 г, и при обычном энерговыделении гелия (1011 Дж/г) энергия вспышки должна доходить до 1032 Дж!

Чтобы обеспечить приток необходимого вещества, звезда-соседка должна отдавать барстеру свое вещество в темпе 1017 г/с - одну земную массу за 2000 лет. Это обеспечивает полное восстановление гелиевого слоя в среднем за 104 с, но сокращает время жизни звезды-соседки. Если масса последней порядка солнечной, то все ее вещество израсходуется на вспышки барстера примерно за полмиллиарда лет. Так барстеры оказались не только превосходным образом открытого для обозрения "термоядерного ада" - того, который, по недавним понятиям, должен был прятаться глубоко в звездных недрах, но и кандидатами на роль активнейших "звездных вампиров".

На этом не исчерпывается обнаруженная в 60-е годы и позднее звездная экзотика. О самой интересной из них - черных дырах - мы поговорим во II части. Там же удастся обсудить и общую картину звездной эволюции, где обычные и экзотические звезды обретают свои естественные места.

ОТКРЫТИЕ ГАЛАКТИКИ

Шаги по открытию Галактики* и Солнечной системы в чем-то очень схожи. Млечный Путь, один из первых ориентиров на звездном небе, выделялся с древнейших времен. Однако его астрономическая интерпретация возникла сравнительно поздно. Лишь систематический интерес астрономов к звездам на рубеже 18-19 веков позволил нащупать некоторые закономерности в группировке далеких светил. Появилась своеобразная гелиоцентрическая модель Гершеля-Каптейна, где Солнце считалось случайным центром огромного звездного скопления. При всем том Галактику еще не рассматривали как особый структурный элемент Вселенной.

* Галактика, которой принадлежит Солнце, пишется с большой буквы - в отличие от остальных галактик.

Джон Гершель впервые и не слишком настойчиво высказал идею, что Магеллановы Облака, наблюдаемые в южном полушарии, представляют собой отдельные очень далекие звездные системы вроде Млечного Пути, но его гипотеза не произвела особого впечатления.

Прорыв наметился внезапно в связи с исследованием объектов, которые долгое время не привлекали внимания,- переменных звезд. В древности их как бы и не замечали, во всяком случае, неизвестны исследования даже тех переменных звезд, чей период нетрудно определить невооруженным глазом. Первый шаг в этой области сделал в 1596 году немецкий астроном Давид Фабрициус (1564-1617), описавший переменную Миру Кита. Устойчивый интерес к переменным возник лишь в период открытия двойных звезд.

Переменные звезды демонстрируют весьма различное поведение. Некоторые из них очень резко меняют блеск. В этом случае разумно считать, что мы имеем дело с планетообразной системой двух звезд, одна из которых периодически затмевает другую. Это так называемые затменные переменные звезды. Но существует и иная ситуация, когда блеск звезды меняется плавно, и такое изменение нельзя объяснить прохождением какого-либо тела через луч зрения. Остается единственный вариант - предположить, что из-за каких-то физических процессов меняется сама светимость звезды, то есть количество энергии, которое она излучает. Среди таких звезд, в свою очередь, выделяются две подгруппы - долгопериодические и короткопериодические. Так называемые цефеиды с периодом от нескольких суток до нескольких десятков суток и особым характером колебаний (похожим на колебания Дельты Цефея) привлекли внимание американского астронома из Гарвардской обсерватории Генриетты Суан Ливитт (1868-1921). В 1908 году, изучая фотографии Малого Магелланова Облака, полученные в Перуанском филиале, Ливитт обнаружила довольно четкую зависимость между яркостью цефеид и их периодом - чем ярче звезда, тем больше период колебаний блеска. Это обстоятельство окончательно выяснилось к 1912 году, и именно оно открыло путь к определению размеров Галактики и межгалактических расстояний. Поэтому цефеиды справедливо стали называть маяками космоса.

Поделиться:
Популярные книги

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Я подарю тебе ребёнка

Малиновская Маша
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Я подарю тебе ребёнка

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Волчья воля, или Выбор наследника короны

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Волчья воля, или Выбор наследника короны

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Спасение 6-го

Уолш Хлоя
3. Парни из школы Томмен
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Спасение 6-го

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное