Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

Неравенство Чебышева. Вероятность того, что отклонение случайной величины Х от её математического ожидания М(Х) по абсолютной величине меньше положительного числа не меньше, чем

т. е.

Доказательство. Так как события |Х-М(Х)|‹ и |Х-М(Х)|>= являются противоположными, то на основании теоремы сложения вероятностей сумма их вероятностей равна единице:

P(|Х-М(Х)|‹)+P(|Х-М(Х)|>=)=1.

Выразим

из полученного равенства вероятность |Х-М(Х)|‹:

P(|Х-М(Х)|‹)=1– P(|Х-М(Х)|>=). (1)

Дисперсия случайной величины Х определяется по формуле:

D(X)=(x1–M(X))2*p1+(x2–M(X))2*p2+…+(xn–M(X))2*pn.

Если отбросить первые k+1 слагаемые, для которых выполняется условие |xj-M(X)|‹ , то получим следующее неравенство:

D(X)>=(xk+1–M(X))2*pk+1+(xk+2–M(X))2*pk+2+…+(xn–M(X))2*pn.

Возведя обе части неравенства

в квадрат, получим равносильное неравенство |xj–M(X)|2>=2. Если заменить в оставшейся сумме каждый из множителей |xj–M(X)|2 числом 2, то получим следующее выражение:

D(X)>= 2(pk+1+ pk+2+…+ pn).

Так как сумма в скобках (pk+1+ pk+2+…+ pn) является выражением вероятности P(|Х-М(Х)|>=), то справедливо неравенство (2):

D(X)>= 2P(|Х-М(Х)|>=),

или

Если подставить неравенство (2) в выражение (1), то получим:

что и требовалось доказать.

Теорема Чебышева. Если величины X1, X2, …, Xn являются последовательностью попарно независимых случайных величин, имеющих дисперсии, ограниченные одной и той же постоянной С (D(Xi)<=C), то, как бы ни было мало положительное число , вероятность неравенства

будет приближаться к единице, если число случайных величин достаточно мало. Другими словами, для любого положительного числа существует предел:

Доказательство. В силу второго свойства дисперсии (постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат) и оценки D(Xi)<=C получим:

Таким образом,

Из данного соотношения и неравенства Чебышева вытекает, что

Отсюда, переходя к пределу при n›, получим

Учитывая, что вероятность не может быть больше единицы, окончательно запишем:

что и требовалось доказать.

Если для рассматриваемых

случайных величин математическое ожидание одинаково и дисперсии данных величин ограничены, то к ним применима теорема Чебышева. В этом случае считается справедливым утверждение, что среднее арифметическое достаточно большого количества попарно независимых случайных величин, дисперсии которых ограничены одной и той же постоянной, утрачивает характер случайной величины.

3. Теоремы Бернулли и Ляпунова

Предположим, что проводится n независимых испытаний. В каждом из этих испытаний вероятность наступления события А постоянна и равна р. Задача состоит в определении относительной частоты появлений события А. Данная задача решается с помощью теоремы Бернулли.

Теорема Бернулли. Если в каждом из n независимых испытаний событие A имеет постоянную вероятность p, то, как угодно близка к единице вероятность того, что отклонение относительной частоты m/n от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико, т. е. при соблюдении условий теоремы справедливо равенство:

Доказательство. Предположим, что

является дискретной случайной величиной, которая характеризует число появлений события А в каждом из испытаний. Данная величина может принимать только два значения: 1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью q=1-p.

Случайные дискретные величины Хiявляются попарно независимыми и дисперсии их ограниченны, следовательно, к данным величинам применима теорема Чебышева:

Математическое ожидание а каждой из величин Хiравно вероятности р наступления события, следовательно, справедливо следующее равенство:

Таким образом, необходимо доказать, что дробь

или

равна относительной частоте m/n появлений события А в n испытаниях.

Каждая из величин

при наступлении события А в соответствующем испытании принимает значение, равное единице. Следовательно, сумма

равна числу m появлений события А в n испытаниях:

С учётом данного равенства можно окончательно записать:

что и требовалось доказать.

Однако при использовании теоремы Бернулли необходимо учитывать то, что из неё не следует равенство

Поделиться:
Популярные книги

Ключи мира

Кас Маркус
9. Артефактор
Фантастика:
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Ключи мира

Под знаком Песца

Видум Инди
1. Под знаком Песца
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Под знаком Песца

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Путь одиночки. Книга 3

Понарошку Евгений
3. Одиночка
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
5.00
рейтинг книги
Путь одиночки. Книга 3

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Отморозок 3

Поповский Андрей Владимирович
3. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 3

Тринадцатый V

NikL
5. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый V

Бесноватый Цесаревич

Яманов Александр
Фантастика:
альтернативная история
7.00
рейтинг книги
Бесноватый Цесаревич

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Системный Алхимик II

Шимуро Павел
2. Алхимик
Фантастика:
рпг
уся
фэнтези
5.00
рейтинг книги
Системный Алхимик II

Противостояние

Демидов Джон
3. Система компиляции
Фантастика:
героическая фантастика
рпг
5.00
рейтинг книги
Противостояние

Наследник в Зеркальной Маске

Тарс Элиан
8. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник в Зеркальной Маске

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум