Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

Главным утверждением теоремы является то, что при достаточно большом количестве испытаний относительная частота m/n будет сколь угодно мало отличаться от постоянной вероятности р наступления события в каждом испытании. Другими словами, теорема Бернулли утверждает, что при n› относительная частота стремится по вероятности к р. Поэтому теорема Бернулли может быть записана следующим образом:

При

проведении статистических исследований, в ходе которых осуществляется сбор данных об исследуемом объекте или процессе, часто сталкиваются с проблемой ошибочности наблюдений. В основе ошибочности наблюдений может лежать как несовершенство методов и инструментов, используемых при проведении статистического исследования, так и заранее непредусмотренные факторы. В связи с этим возникла задача исключения подобных ошибок наблюдения.

Ошибки наблюдения делятся на систематические ошибки и случайные ошибки.

Систематическими ошибками наблюдения называются такие ошибки, которые вызваны несовершенством методов и инструментов, применяемых при проведении исследования. Теоретически все систематические ошибки наблюдения могут быть исключены.

Случайными ошибками наблюдения называются такие ошибки, которые возникают под воздействием целой совокупности случайных факторов. При этом каждый из этих факторов в отдельности вызывает частичную ошибку, а результатом совместного действия всех случайных факторов является суммарная случайная ошибка, которую уже подлежит оценке.

Допустим, что была проведена серия наблюдений некоторой случайной величины Х. В ходе наблюдений данной случайной величины возникли ошибки, сформированные воздействием множества независимых факторов

Тогда ошибка а, возникающая в ходе наблюдения случайной величины Х, может быть представлена с помощью выражения:

а=f(X1,X2,…,Xn),

где f– это закономерность образования ошибки.

В связи с тем, что ошибка наблюдений а – величина случайная, то для наиболее точной характеристики данной величины необходимо знать закон распределения её вероятностей. Данная задача решается с помощью теоремы А.М. Ляпунова, также известной под названием центральной предельной теоремы. В качестве одной из математических предпосылок эконометрического моделирования выступает следствие из теоремы Ляпунова.

Следствие теоремы Ляпунова. Если случайная величина Х является суммой очень большого числа попарно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то случайная величина Х подчиняется закону распределения, который близок к нормальному закону распределения вероятностей случайной величины.

Если суммарную ошибку наблюдений рассматривать как сумму очень большого числа попарно независимых частных ошибок, следовательно, то можно сделать вывод, что суммарная ошибка подчиняется закону распределения, который близок к нормальному

закону распределения вероятностей.

4. Виды эконометрических моделей

Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:

1) модель временных рядов;

2) модели регрессии с одним уравнением;

3) системы одновременных уравнений.

Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.

К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:

а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;

б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;

в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.

К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:

а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;

б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;

в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.

Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.

Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.

Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.

Определение. Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии:

y=f(x,)=f(х1,х2,…,хn, 1…k)

где 1…k – параметры модели регрессии.

Можно выделить две основных классификации моделей регрессии::

а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;

б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,).

В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:

а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);

Поделиться:
Популярные книги

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Тайны затерянных звезд. Том 3

Лекс Эл
3. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
5.00
рейтинг книги
Тайны затерянных звезд. Том 3

Хроники странного королевства. Шаг из-за черты. Дилогия

Панкеева Оксана Петровна
73. В одном томе
Фантастика:
фэнтези
9.15
рейтинг книги
Хроники странного королевства. Шаг из-за черты. Дилогия

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Черный Маг Императора 12

Герда Александр
12. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 12

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Блокада. Знаменитый роман-эпопея в одном томе

Чаковский Александр Борисович
Проза:
военная проза
7.00
рейтинг книги
Блокада. Знаменитый роман-эпопея в одном томе

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Неомифы

Неделько Григорий Андреевич
Фантастика:
научная фантастика
5.00
рейтинг книги
Неомифы

Призван, чтобы защитить?

Кириллов Сергей
2. Призван, чтобы умереть?
Фантастика:
фэнтези
рпг
7.00
рейтинг книги
Призван, чтобы защитить?

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора