Ответы на экзаменационные билеты по эконометрике
Шрифт:
Сезонные колебания, разложенные рядом Фурье, представляют собой сумму нескольких синусоидальных и косинусоидальных гармоник с различными периодами:
где uk, k – некоррелированные случайные величины с нулевым математическим ожиданием и одинаковыми дисперсиями:
D(uk)=D(k)=Dk;
k– длина волны функции синуса или косинуса, называемая частотой.
Частота
Цель спектрального анализа временных рядов заключается в оценивании спектра ряда. Спектр временного ряда можно определить как разложение дисперсии ряда по частотам для определения значимых гармоник.
Значение спектра временного ряда рассчитывается по формуле:
где j – частоты, для которых оцениваются спектры:
ck – автокорреляционная функция, значения которой рассчитываются по формуле:
k – специально подобранные веса значений ковариационной функции, зависящие от частоты m, которые называются корреляционным окном.
Корреляционным окном называется преобразованная форма взвешенного скользящего среднего шириной m.
Дисперсия ряда Фурье рассчитывается по формуле:
Дисперсия ряда Фурье равна сумме всех гармоник её спектрального разложения.
Следовательно, дисперсия D(yt) распределена по различным частотам. Графически распределение дисперсии ряда Фурье изображается с помощью периодограммы. Суть анализа периодограммы заключается в определении частоты или периода с наибольшими спектральными плотностями, которые вносят наибольший вклад в периодические колебания временного ряда, что позволит определить его основной период колебания.
Ряд Фурье вида
можно рассматривать как линейную модель множественной регрессии.
Результативной переменной в данной модели будут являться значения временного ряда, а независимыми переменными – функции синусов всех возможных частот. Коэффициенты uk при косинусах и k при синусах будут представлять собой коэффициенты модели регрессии, которые показывают степень, с которой коррелированности соответствующих функций с исходными данными. Если рассчитанное значение коэффициента при определённом синусе или косинусе достаточно велико, то на соответствующей частоте в исходных данных существует строгая периодичность.
79.
Методы фильтрации временных рядов предназначены на решение проблем, возникающих при исследовании взаимосвязи между двумя и более временными рядами, с помощью исключения из них трендовой и сезонной компонент.
К проблемам, которые позволяют устранить методы фильтрации временных рядов, относятся:
1) проблема ошибочности показателей тесноты и силы связи:
а) если временные ряды, между которыми изучается взаимосвязь, содержат циклическую или сезонную компоненту одинаковой периодичности, то в результате значение показателей тесноты связи будет завышено;
б) если один из временных рядов содержит циклическую или трендовую компоненту или периодичность совместных колебаний различна, то в результате значение показателей тесноты связи будет занижено;
2) проблема «ложной корреляции»:
а) если временные ряды, между которыми изучается взаимосвязь, содержат тренды одинаковой направленности, то уровни этих рядов будут положительно коррелированны;
б) если временные ряды, между которыми изучается взаимосвязь, содержат тренды противоположной направленности, то уровни этих рядов будут отрицательно коррелированны.
Первая проблема решается путём исключения из временного ряда сезонной компоненты.
Если временной ряд представлен в виде аддитивной модели, то сезонная компонента устраняется путём вычитания из исходных уровней ряда показателей абсолютных отклонений Sai.
Если временной ряд представлен в виде мультипликативной модели, то сезонная компонента устраняется путём деления исходных уровней ряда на индексы сезонности Isi.
Проблема “ложной корреляции” решается путём исключения из временного ряда трендовой компоненты.
Предположим, что исследуется зависимость между двумя временными рядами – Х и Y. При этом была построена модель регрессии вида:
Yt=0+1*Хt+t.
Для выявления «ложной корреляции» необходимо провести анализ остатков данной модели регрессии, потому что если в модели присутствует обычная автокорреляция остатков, следовательно, существует и «ложная автокорреляция».
Исключение трендовой компоненты осуществляется с помощью метода отклонений от тренда.
Алгоритм реализации метода отклонений от тренда:
1) вычисляются отклонения уровней временных рядов Yt и Xt от их значений, рассчитанных на основе уравнений тренда:
2) определяется степень тесноты связи между полученными отклонениями с помощью коэффициента корреляции:
3) для линейной модели регрессии строится модель зависимости отклонения e(yt) от e(xt):