Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

yt=yt–1+t.

Для модели АР(1) действует ограничение ||<1.

Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:

yt=1yt-1+2yt-2+t.

На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:

1) (1+2)<1;

2) (1–2)<1;

3) |2|<1.

Модели

скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.

Общая модель скользящего среднего порядка q имеет вид:

yt=t–1t–1–2t–2–…–qt–q,

где q – порядок модели скользящего среднего;

t – неизвестные коэффициенты модели, подлежащие оцениванию;

t – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).

На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.

Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).

Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:

yt=yt–1+t–t–1,

где – параметр процесса авторегрессии;

– параметр процесса скользящего среднего;

t – белый шум.

На коэффициенты данной модели накладываются следующие ограничения:

1) ||<1 – условие, обеспечивающее стационарность смешанной модели;

2) ||‹1 – условие, обеспечивающее обратимость смешанной модели.

Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.

83. Модель авторегрессии и проинтегрированного скользящего среднего

Модель авторегрессии и проинтегрированного скользящего среднего (АРПСС)

была предложена американскими учёными Боксом и Дженкинсом в 1976 г. как один из методов оценки неизвестных параметров и прогнозирования временных рядов.

Моделью авторегрессиии проинтегрированного скользящего среднего называется модель, которая применяется при моделировании нестационарных временных рядов.

Нестационарный временной ряд характеризуется непостоянными математическим ожиданием, дисперсией, автоковариацией и автокорреляцией.

В основе модели авторегрессии и проинтегрированного скользящего среднего лежат два процесса:

1) процесс авторегрессии;

2) процесс скользящего среднего.

Процесс авторегрессии может быть представлен в виде:

xt=a+1xt-1+2xt-2+…+t,

где a – свободный член модели, являющийся константой;

1 2…— параметры модели авторегрессии;

– случайное воздействие (ошибка модели).

Каждое наблюдение в модели авторегрессии представляет собой сумму случайной компоненты и линейной комбинации предыдущих наблюдений.

Процесс скользящего среднего может быть представлен в виде:

xt=+t–1t–1–2t–2–…

где – свободный член модели, являющийся константой;

1 2… – параметры модели скользящего среднего;

– случайное воздействие (ошибка модели).

Текущее наблюдение в модели скользящего среднего представляет собой сумму случайной компоненты в данный момент времени и линейной комбинации случайных воздействий в предыдущие моменты времени.

Следовательно, в общем виде модель авторегрессии и проинтегрированного скользящего среднего описывается формулой:

где Ссвободный член модели, являющийся константой;

t – некомпенсированный моделью случайный остаток.

В обозначениях Бокса и Дженкинса модель авторегрессии и проинтегрированного скользящего среднего записывается как АРПСС(p,d,q) или ARIMA (p,d,q), где

p – параметры процесса авторегрессии;

d – порядок разностного оператора;

q – параметры процесса скользящего среднего.

Для рядов с периодической сезонной компонентой применяется модель авторегрессии и проинтегрированного скользящего среднего с сезонностью, которая в обозначениях Бокса и Дженкинса записывается как АРПСС (p,d,q) (ps,ds,qs), где

ps – сезонная авторегрессия;

ds – сезонный разностный оператор;

qs – сезонное скользящее среднее.

Поделиться:
Популярные книги

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Ересь Хоруса. Омнибус. Том 3

Коннелли Майкл
Ересь Хоруса
Фантастика:
фэнтези
5.00
рейтинг книги
Ересь Хоруса. Омнибус. Том 3

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Младший сын князя. Том 2

Ткачев Андрей Юрьевич
2. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 2

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Отражения (Трилогия)

Иванова Вероника Евгеньевна
32. В одном томе
Фантастика:
фэнтези
8.90
рейтинг книги
Отражения (Трилогия)

Фея любви. Трилогия

Николаева Мария Сергеевна
141. В одном томе
Фантастика:
фэнтези
8.55
рейтинг книги
Фея любви. Трилогия

Барон Дубов 5

Карелин Сергей Витальевич
5. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 5