Ответы на экзаменационные билеты по эконометрике
Шрифт:
yt=yt–1+t.
Для модели АР(1) действует ограничение ||<1.
Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:
yt=1yt-1+2yt-2+t.
На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:
1) (1+2)<1;
2) (1–2)<1;
3) |2|<1.
Модели
Общая модель скользящего среднего порядка q имеет вид:
yt=t–1t–1–2t–2–…–qt–q,
где q – порядок модели скользящего среднего;
t – неизвестные коэффициенты модели, подлежащие оцениванию;
t – белый шум.
Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).
На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).
Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.
Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:
yt=yt–1+t–t–1,
где – параметр процесса авторегрессии;
– параметр процесса скользящего среднего;
t – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
1) ||<1 – условие, обеспечивающее стационарность смешанной модели;
2) ||‹1 – условие, обеспечивающее обратимость смешанной модели.
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.
83. Модель авторегрессии и проинтегрированного скользящего среднего
Модель авторегрессии и проинтегрированного скользящего среднего (АРПСС)
Моделью авторегрессиии проинтегрированного скользящего среднего называется модель, которая применяется при моделировании нестационарных временных рядов.
Нестационарный временной ряд характеризуется непостоянными математическим ожиданием, дисперсией, автоковариацией и автокорреляцией.
В основе модели авторегрессии и проинтегрированного скользящего среднего лежат два процесса:
1) процесс авторегрессии;
2) процесс скользящего среднего.
Процесс авторегрессии может быть представлен в виде:
xt=a+1xt-1+2xt-2+…+t,
где a – свободный член модели, являющийся константой;
1 2…— параметры модели авторегрессии;
– случайное воздействие (ошибка модели).
Каждое наблюдение в модели авторегрессии представляет собой сумму случайной компоненты и линейной комбинации предыдущих наблюдений.
Процесс скользящего среднего может быть представлен в виде:
xt=+t–1t–1–2t–2–…
где – свободный член модели, являющийся константой;
1 2… – параметры модели скользящего среднего;
– случайное воздействие (ошибка модели).
Текущее наблюдение в модели скользящего среднего представляет собой сумму случайной компоненты в данный момент времени и линейной комбинации случайных воздействий в предыдущие моменты времени.
Следовательно, в общем виде модель авторегрессии и проинтегрированного скользящего среднего описывается формулой:
где С – свободный член модели, являющийся константой;
t – некомпенсированный моделью случайный остаток.
В обозначениях Бокса и Дженкинса модель авторегрессии и проинтегрированного скользящего среднего записывается как АРПСС(p,d,q) или ARIMA (p,d,q), где
p – параметры процесса авторегрессии;
d – порядок разностного оператора;
q – параметры процесса скользящего среднего.
Для рядов с периодической сезонной компонентой применяется модель авторегрессии и проинтегрированного скользящего среднего с сезонностью, которая в обозначениях Бокса и Дженкинса записывается как АРПСС (p,d,q) (ps,ds,qs), где
ps – сезонная авторегрессия;
ds – сезонный разностный оператор;
qs – сезонное скользящее среднее.