Песни о Паскале
Шрифт:
О рекурсии и стеке
Такой самовызов процедур называют рекурсией. «У попа была собака…» – помните? Это рекурсия, познакомимся с нею ближе (с рекурсией, а не собакой).
Легко заметить, что повторные вызовы процедуры QuickSort выполняются с другими значениями левой и правой границ. Чем глубже вызов, тем уже эти границы. С некоторого момента условия (R > aL) и (L < aR) перестают выполняться, и происходит выход из процедуры, – здесь фермеры возвращаются к несортированным частям массива.
Напрашивается вопрос: какова судьба локальных переменных и параметров при повторных входах в процедуру? Ведь они изменятся, а это должно нарушить работу процедуры. Параметры и локальные переменные действительно изменяются, но это не путает алгоритм. Почему?
Разгадка в том, что при каждом входе в процедуру для её параметров и локальных переменных выделяется новый участок памяти. Теперь это будут уже другие параметры и локальные переменные, но с прежними названиями. Однако предыдущие их значения не теряются, а сохраняются в памяти, называемой стеком (Stack).
Что такое стек и как он работает? Случалось ли вам паковать рюкзак или глубокую сумку? Тогда вы знакомы со стеком. Все, что уложено в рюкзак, будет извлекаться из него в обратном порядке. Так же устроен и стек: при каждом вызове процедуры память для параметров и локальных переменных выделяется на его вершине. Эти новые значения временно закрывают предыдущие значения параметров, и так происходит при каждом входе в процедуру.
При выходе из неё последние значения параметров и локальных переменных удаляются с вершины стека, и тогда вновь открываются ранее скрытые. Так процедура «вспоминает» о неоконченной работе, и продолжает действия с параметрами, сохраненными в стеке ранее. В некоторый момент стек пустеет (когда все вещи из рюкзака вынуты), и тогда происходит окончательный выход из процедуры в главную программу.
Механизм стековой памяти заложен в конструкцию процессора, и он не требует участия программиста. Стек используется для любых процедур и функций, а не только рекурсивных.
Но стоп! О стеке поговорим позже, а сейчас займемся делом. Введите программу «P_43_2» и убедитесь в её правильной работе.
Алгоритмы, на старт!
Теперь в нашем распоряжении есть три процедуры сортировки, не устроить ли состязание между ними? На старт вызываются:
• BubbleSort – «пузырьковая» сортировка,
• FarmSort – «фермерская» сортировка,
• QuickSort – быстрая сортировка.
Время «спортсменов» мы будем засекать не по часам. И вы знаете, почему: мы сравниваем алгоритмы, а не компьютеры. В 42-й главе, где сравнивались алгоритмы поиска, мы оценивали время по количеству выполненных шагов. Поступим и здесь похожим образом. Вспомним, в чем состоит сортировка? – в сравнениях и перестановках. И много-много раз… Значит, трудоемкость сортировки можно оценить количеством этих двух операций – сравнений и перестановок, надо их только посчитать.
Что
Далее в программе следуют знакомые вам процедуры сортировки, – это наши «спортсмены». В их тела «вживлены» дополнительные операторы для подсчета сравнений (C1) и перестановок (C2), – они выделены курсивом. Наконец, главная программа, – она вызывает по очереди каждую из процедур и печатает количество сравнений и перестановок. Здесь равные условия для соревнующихся создаются загодя сформированным случайным массивом Arr0, который копируется в массив Arr перед каждой сортировкой.
Вам осталось лишь задать размер массива константой CSize, скомпилировать и запустить программу.
{ P_43_3 – Сравнение алгоритмов сортировки }
const CSize=100; { размер массивов }
type TNumbers = array [1..CSize] of Integer;
var Arr0 : TNumbers; { несортированный массив-заготовка }
Arr : TNumbers; { сортируемый массив }
C1, C2 : extended; { счетчики сравнений и перестановок }
{ BubbleSort "пузырьковая" сортировка }
procedure BubbleSort(var arg: TNumbers);
var i, j, t: Integer;
begin
for i:= 1 to CSize-1 do
for j:= 1 to CSize-i do begin
C1:=C1+1; { подсчет сравнений }
if arg[j] > arg[j+1] then begin
C2:=C2+1; { подсчет перестановок }
t:= arg[j]; arg[j]:= arg[j+1]; arg[j+1]:= t;
end;
end;
end;
{ FarmSort – «Фермерская» сортировка }
procedure FarmSort(var arg: TNumbers);
var L, R, T: Integer;
begin
for L := 1 to CSize-1 do
for R := CSize downto L+1 do begin
C1:=C1+1; { подсчет сравнений }
if arg[L] > arg[R] then begin
C2:=C2+1; { подсчет перестановок }
T:= arg[L]; arg[L]:= arg[R]; arg[R]:= T;
end;
end;
end;
{ QuickSort – Быстрая сортировка }
procedure QuickSort(var arg: TNumbers; aL, aR: Integer);
var
L, R, Mid, T: Integer;
begin
L:= aL; R:= aR;
Mid:= (arg[L] + arg[(L + R) div 2] + arg[R]) div 3;
repeat
while arg[L] < Mid do begin L:=L+1; C1:=C1+1 end;
while arg[R] > Mid do begin R:=R-1; C1:=C1+1 end;
if L <= R then begin
if arg[L]>arg[R] then begin
C2:=C2+1; { подсчет перестановок }