Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если в расплав какой-либо соли (скажем, поваренной — NaCl) опустить два электрода и подключить их к полюсам батареи, то в расплаве произойдут изменения: на катоде (электрод, который подключён к отрицательному полюсу батареи) начнёт выделяться чистый металл натрий, на аноде — газ хлор. Это означает, что в расплаве атомы натрия заряжены положительно, а атомы хлора — отрицательно, и поэтому под действием электрического поля они двигаются в противоположных направлениях.

Майкл Фарадей (1791–1867) в 1834 году установил количественные законы этого явления. Оказалось, что если через растворы различных веществ, молекулы которых построены из одновалентных атомов, пропускать одно и то же количество электричества, равное 96521 кулону, то на электродах всегда выделяется ровно

по одному грамм-атому вещества. Например, из расплава поваренной соли выделится 23 г металла натрия и 37,5 г газа хлора.

Закон электролиза Фарадея легко понять, если предположить, что в расплаве NaCl с каждым атомом связан определённый заряд, причём для ионов Na+ и Cl эти заряды равны и противоположны по знаку. (Название ион — «странник» — таким «заряженным» атомам дал Фарадей.) Заряд, который переносит один ион, равен e=4,802•10– 10 CGSE (электростатических единиц электричества).

Это значение очень мало, но мы уже немного привыкли к таким малым величинам. Более удивительно другое: заряда, меньшего, чем этот элементарный заряд e, обнаружить не удалось. С лёгкой руки Джонстона Стонея (1826–1911) в 1891 году это наименьшее количество заряда получило название «электрон».

ЭЛЕКТРОНЫ

Первоначально с этим словом не связывали понятия о частице. Оно служило лишь для обозначения того наименьшего количества заряда, которое может переносить с собой ион любого атома. Однако подспудно мысль о том, что электрон — частица, всегда жила. Действительно, проследите мысленно процесс электролиза: вот ион натрия (Na+), двигаясь в растворе под действием электрического поля, подходит к катоду; на катоде избыток отрицательных зарядов, поэтому в момент, когда ион Na+ его касается, он забирает от катода один отрицательный заряд и, не меняя веса, выделяется в виде нейтрального атома натрия.

Попробуйте теперь вообразить сам момент перехода отрицательного заряда от катода к иону Na+: что добавляется к иону, когда он, не меняя веса, становится нейтральным?

Представить себе этот процесс довольно трудно, если не предполагать при этом, что элементарный заряд может существовать и вне атома. Эту трудность сознавали, конечно, все, но признать атомарное строение электричества было ещё труднее, ибо при этом рушились удобные и привычные представления об электричестве как о некоем тонком флюиде, который без труда проникает во все тела.

В 1881 году на собрании Лондонского химического общества, посвящённом чествованию памяти Майкла Фарадея, Герман Людвиг Фердинанд фон Гельмгольц (1821–1894) прочёл доклад «Современное развитие взгляда Фарадея на электричество». В этом докладе Гельмгольц впервые отчётливо сформулировал мысль о «молекулярном строении электричества». Конечно, сама по себе эта мысль даже в то время не была новой.

Ещё в 1749 году великий американец Бенджамен Франклин подозревал нечто похожее, но тогда его догадка ни на чём, в сущности, не была основана, а потому и не привела к новым — следствиям. В 1871 году к мысли Франклина возвратился немецкий физик Вильгельм Эдуард Вебер (1804–1891), но сочувствия не встретил: в его время об электричестве знали уже так много, что на веру гипотез не принимали — знание предполагает ответственность. Нужны были экспериментальные доказательства идеи об электроне. Их стали искать в явлениях проводимости газов.

Бенджамен Франклин

Представьте себе стеклянную трубку, наполненную каким-либо газом (например, неоном) и запаянную с обоих концов вместе с проволочками (обычно — платиновыми). Если мы обе эти проволочки присоединим к разным полюсам батареи:

одну к отрицательному (катоду), а другую — к положительному (аноду), то по цепи пойдёт ток. Совершенно так же, как и в случае с электролитом. Вероятно, именно эта аналогия с явлениями электролиза и побудила в своё время (в 1838 году) Майкла Фарадея построить прообраз такой трубки («электрическое яйцо» Фарадея). Как мы увидим позже, аналогия была чисто внешней, но и само по себе явление проводимости газов было настолько интересным, что многие исследователи посвятили жизнь изучению его свойств.

Примерно в середине прошлого века Юлиус Плюккер (1801–1868) (это имя знакомо теперь каждому математику) оставил свои занятия геометрией, которые не нашли признания среди современников, и увлёкся опытной физикой. Когда вы следите за игрой световых реклам, вы обязаны этим зрелищем профессору математики в Берлине и Бонне. Именно Плюккер в 1858, году изобрёл эти светящиеся трубки. (Обычно их называли Гейслеровыми, по имени знаменитого стеклодува Генриха Гейслера, который был техническим ассистентом Плюккера и научился особенно искусно их изготовлять; а ещё полвека спустя их повсеместно называли трубками Крукса).

Прежде всего Плюккер установил, что проводимость газа зависит от его концентрации в трубке и возрастает, если часть газа из трубки откачать. При этом каждый газ начинает светиться своим характерным цветом, так что по цвету свечения можно определить состав газа в трубке. (К этому выводу Плюккер пришёл даже раньше Кирхгофа и Бунзена, но не понял его значения.) Если увеличивать разрежение в трубке, то вблизи катода появляется тёмное пространство («катодное пятно»), которое при дальнейшем откачивании газа из трубки расширяется и наконец заполняет её всю: трубка перестаёт светиться. Но это тёмное пространство живёт, его пронизывают какие-то «лучи», хоть и невидимые для глаза (как невидима летящая пуля, пока не встретит препятствия на своём пути).

Плюккер

Ученик Плюккера Евгений Гольдштейн (1850–1931) в 1876 году дал им название: катодные лучи. Ещё раньше, в 1869 году, другой его ученик, Иоганн Вильгельм Гитторф (1824–1914), обнаружил отклонение этих лучей в магнитном поле, и наконец в 1879 году Кромвель Вэрли (1828–1883) показал, что они заряжены отрицательно.

Поставьте себя на место этих исследователей: 70-е годы XIX столетия, у вас в руках набор интересных фактов, однако связи между ними не видно. С одной стороны, явление проводимости газов очень напоминает процессы электролиза, но, с другой стороны, происходят вещи совсем непонятные: например, проводимость растёт с уменьшением концентрации газа в трубке. Кроме того, обнаружен только поток отрицательных «лучей» и не обнаружено положительных.

Нужна была руководящая идея.

Такая идея возникла после блестящих опытов, которые поставил Уильям Крукс — английский физик и химик. Это был интересный человек, наделённый к тому же редким даром — предвидеть фундаментальные открытия. Крукс нигде не служил и всецело был предан науке (что не помешало ему, однако, верить в спиритизм и в 1913 году стать президентом Королевского общества).

Прежде всего, он гораздо сильнее откачал воздух из трубки. При этом от катода отделилось ещё одно, более тёмное пространство, которое также постепенно заполнило всю трубку, после чего анод вспыхнул зеленоватым светом. Тот день 1878 года, когда это произошло, можно считать днём рождения электронно-лучевой трубки — основной части современного телевизора. Уже за одно это Круксу обеспечено признание потомков. Но для самого Крукса это было только началом — он стал тщательно изучать свойства излучения, которое он называл лучистой материей (этот термин ввёл всё тот же Фарадей ещё в 1816 году). Крукс чувствовал, что столкнулся с совершенно новым явлением природы, и предлагал назвать его «четвёртым состоянием вещества», которое «ни жидко, ни твёрдо, ни газообразно». Он писал:

Поделиться:
Популярные книги

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Оживший камень

Кас Маркус
1. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Оживший камень

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Искатель 1

Шиленко Сергей
1. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 1

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник