По ту сторону кванта
Шрифт:
«…преодолеть такие трудности, смысл которых мы сейчас даже понять не в состоянии»;
нужно было сначала в течение десяти (!) лет доказывать, что -частицы — не что иное, как атомы гелия, потерявшие два электрона, Доказательство оказалось непростым, и Шведская академия наук хорошо понимала это, когда в 1908 году присудила Резерфорду Нобелевскую премию за исследования по химии радиоактивных веществ, в результате распада которых образуются -частицы. Обо всём этом постепенно забыли: результат был важнее и проще, чем путь, к нему приведший.
Сообщение Резерфорда физики
ЛУЧИ
Независимо от гипотез о строении атома учёные рано поняли, что знания о нём можно получить, изучая его линейчатый спектр (так музыкант по тону струны определяет её длину, а по аккорду узнает инструмент). В физике всякое изучение в конечном итоге сводится к измерению. Поэтому прежде всего необходимо было научиться измерять длины волн как можно точнее, то есть ещё пристальнее, чем Фраунгофер, исследовать структуру линейчатого спектра.
На призменном спектрографе Кирхгофа и Бунзена этого сделать уже было нельзя. Стеклянную призму в нём сменила дифракционная решётка, которую значительно усовершенствовал Генри Роулэнд (1848–1901) — представитель тогда ещё молодой американской науки. С помощью этого прибора в течение нескольких десятилетий трудами Карла Рунге (1856–1927), Фридриха Кайзера (1853–1940) и особенно лаборатории Фридриха Пашена (1865–1947) в Тюбингене были точно измерены десятки тысяч спектральных линий различных элементов и аккуратно записаны в длинные таблицы. (К 1913 году общее число работ по спектральному анализу перевалило за 50 тыс. В частности, оказалось, что знаменитая жёлтая линия D в спектре натрия. состоит из двух очень близко расположенных линий: D1= 5895,9236 A и D2 = 5889,9504 A. (1 A = 10– 8 см, то есть примерно равен размеру атома.)
Но высшая задача любой науки не в том, чтобы накоплять факты, а в том, чтобы установить связи между явлениями и найти их причину. Всем было ясно, что в этих длинных таблицах заключена огромная информация о структуре атома. Но как её оттуда извлечь? (Вероятно, такие же чувства испытывали египтологи до Шампольона, глядя на иероглифы.)
Первый шаг всегда труден и незаметен. Поэтому об Иоганне Якобе Бальмере (1825–1898), который впервые обнаружил какую-то систему в этом хаосе чисел, мы знаем очень мало. Известно, что родился он 1 мая 1825 года в маленьком городке Лаузене Базельского кантона, там же окончил среднюю школу, а затем изучал математику в университетах Карлсруэ, Берлина и Базеля. В 1869 году он стал доктором философии и приват-доцентом Базельского университета, но вскоре оставил профессорское кресло и предпочёл преподавать физику в женской гимназии. Бальмеру было уже 60 лет, когда он вдруг заметил, что четыре спектральные линии в видимой части спектра водорода расположены не беспорядочно, а образуют серию, которую можно описать единой формулой:
=b•k2/(k2– n2)
где: n = 2; k = 3, 4, 5, 6; b = 3645,6 A.
Это простое соотношение заслуживает всяческого внимания. Дело в том, что оно точное, в чём каждый желающий может легко убедиться сам.
Взгляните на табличку, которую составил в 1885 году Бальмер:
В первом столбце выписаны длины волн упомянутых четырёх спектральных линий, вычисленные по формуле Бальмера; во втором — длины волн, которые незадолго перед этим тщательно измерил шведский физик Ионас Андерс Ангстрем (1814–1874). Совпадение измеренных и вычисленных
Иногда Бальмера изображают чудаковатым школьным учителем, который от нечего делать делил и умножал различные числа, пока случайно не набрёл на простые связи между ними. Это неверно. Он был глубоко образованным человеком, писал статьи по разным вопросам проективной геометрии и постоянно возвращался к самым сложным проблемам теории познания. Например, в 1868 году он опубликовал работу, в которой пытался выяснить соотношение между научными исследованиями и системами мировой философии. Сам он с детских лет находился под влиянием пифагорейцев с их учением о гармонии и мистической роли целых чисел в природе. Как и древние, Бальмер был убеждён, что тайну единства всех наблюдаемых явлений следует искать в различных комбинациях целых чисел. Поэтому, когда его внимание привлёк набор чётко ограниченных спектральных линий, он подошёл к этому явлению природы с уже готовой меркой. Его ожидания оправдались: оказалось, что длины волн спектральных линий связаны между собой простыми рациональными соотношениями.
С открытия Бальмера начинается целая эпоха в науке об атоме. По существу, вся теория атома начинается с его формулы. Тогда ещё этого не знали, но, вероятно, почувствовали. Уже в 1886 году Рунге заметил, что формула Бальмера становится прозрачнее, если в неё вместо длины волны поставить частоту =c/,
=c/b[(1/n2)-(1/k2)]
А в 1890 году шведский физик Иоганн Роберт Ридберг (1854–1919) предложил записывать формулу в том виде, который она сохранила до сих пор:
=c•R[(1/n2)-(1/k2)]
Здесь: c — скорость света, n и k — знакомые нам целые числа, а число R=109677,576 см– 1 называется с тех пор «постоянной Ридберга» для атома водорода. Полагая в этой формуле n=2, можно вычислить всю серию Бальмера, измеренную впоследствии вплоть до k=31.
Тогда же возникла мысль записывать частоту в виде разности двух чисел-термов Tn и Tk:
=[(c•R)/n2]-[(c•R)/k2]=Tn– Tk
Пока что в такой записи не видно глубокого смысла, да и особых преимуществ тоже. Однако в 1908 году молодой, рано умерший швейцарский учёный Вальтер Ритц (1878–1909) объяснил преимущества такой формы записи. Продолжая работы Ридберга, он сформулировал так называемый комбинационный принцип: частоту произвольной линии в спектре любого атома можно представить как разность двух термов Tnи Tk:
nk=Tn– Tk
даже в том случае, когда отдельный терм Tn уже нельзя записать в таком простом виде, как для атома водорода.
На первый взгляд в этом нет никакого выигрыша: просто от набора частот мы перешли к набору термов. Однако это не так: попытайтесь прочесть книгу, в которой нет промежутков между словами, и вы сразу почувствуете разницу. Особенно если эта книга на неизвестном языке. Кроме того, чисел стало значительно меньше: чтобы определить частоты 50 линий водорода, которые были известны в начале века, достаточно знать десяток термов.