Чтение онлайн

на главную - закладки

Жанры

Почему мы не проваливаемся сквозь пол
Шрифт:

Теперь-то мы знаем в общих чертах, какой должна быть прочность любого материала и почему далеко не всегда она достигается на практике. Более того, нам в какой-то мере известно, что нужно делать, чтобы повысить прочность материала. Этими знаниями мы прямо или косвенно обязаны Гриффитсу. Ниже в сокращенном и несколько видоизмененном виде я приведу его основные идеи.

Прежде всего мы должны уметь обращаться с понятием энергии, которая представляет собой способность совершать работу. Энергия имеет размерность силы, умноженной на расстояние. Так, если я поднимаю груз весом 2 кг на высоту 1,5 м, то я увеличиваю его потенциальную энергию на 3 кгм. Эта энергия (она исходит от моего обеда, который

в свою очередь исходит от солнца, и т.д.) может быть преобразована в любую из форм энергии, но не может быть уничтожена. Потенциальная энергия представляет собой очень удобный способ "консервирования" энергии. Когда это потребуется, она может пройти через различные последовательные преобразования из одной формы в другую. Эти переходы могут быть очень наглядными, при этом может быть рассчитан баланс энергии.

Накопленная, или потенциальная, энергия поднятого груза прежде использовалась, например, для привода настенных часов. Сейчас в большинстве часовых механизмов запас энергии содержится в пружине. Выбор способа накопления энергии - всего лишь вопрос удобства, а не принципа[21]. Энергия деформированного тела очень напоминает энергию поднятого груза, следует лишь иметь в виду, что в процессе деформирования сила изменяется, в то время как вес практически не зависит от высоты подъема, если она, конечно, не слишком велика. Согласно закону Гука при деформации напряжение в материале растет линейно. Следовательно, если исходное напряжение было равно нулю, то энергия деформации в единице объема выражается формулой 1/2·(Напряжение·Деформация)

То, что энергия деформации вполне обычная тривиальная вещь, отлично демонстрируется стрелками-лучниками. Между прочим, поэтому следует держаться в стороне от натянутых тросов. Кинетическая энергия причаленного судна, то есть энергия движения судна, качающегося на волнах у причала, преобразуется в энергию деформации чалки. Если чалка обрывается, то эта энергия переходит в кинетическую энергию каната, которая может оказаться слишком большой для стоящего на ее пути человека.

Следовательно, все тела в нагруженном состоянии обладают энергией деформации, и эта энергия тем или иным способом может быть преобразована в любую другую форму энергии, чаще всего - в тепло. Но дети всегда ухитряются узнать, что энергию растянутой резины можно использовать для разрушения, например стекла. Не знаю, может быть, именно такие ассоциации привели Гриффитса к мысли о разрушении как об энергетическом процессе.

Когда разрушается хрупкий материал, в области разрушения образуются две новые поверхности, которые до этого не существовали, и идея Гриффитса заключалась в том, что нужно связать энергию новых поверхностей с энергией деформации тела перед разрушением. Теперь давайте разберемся, что же такое поверхностная энергия. Мы знаем, что энергия имеет много форм - тепловая, электрическая, энергия деформации и т.д., - но то, что поверхность твердого тела обладает энергией только в силу самого существования своего как поверхности, - это становится ясно не сразу.

Наблюдая дождевые капли, пузыри, насекомых, шагающих по поверхности воды, мы легко приходим к выводу, что вода, как и другие жидкости, имеет поверхностное натяжение. Поверхностное натяжение - это совершенно реальная физическая сила, которая может быть измерена без особого труда. Следовательно, если площадь поверхности жидкости увеличивается, то производится работа по преодолению этой силы, и энергия накапливается в новой поверхности. Подсчитывая баланс энергии, мы должны учитывать поверхностную энергию так же, как и другие виды энергии. Например, когда комар садится на воду, поверхность прогибается под его лапками; следовательно, площадь поверхности

и ее энергия увеличиваются. Комар проваливается до тех пор, пока увеличение поверхностной энергии воды не сравняется с уменьшением потенциальной энергии насекомого, дальше комар не тонет, и это его, наверное, вполне устраивает.

Жидкость стремится по возможности уменьшить свою поверхностную энергию. К примеру, тонкая струя жидкости из только что закрытого крана, достигнув определенного диаметра, непременно разобьется на отдельные капли с меньшей поверхностной энергией. Когда жидкость замерзает, молекулярный характер ее поверхности изменяется мало, и энергия поверхности сохраняется, хотя поверхностное натяжение уже не в силах изменить форму твердой частицы, округлив ее подобно капле. В большинстве твердых тел межатомные связи прочнее и жестче, чем в обычных жидкостях, соответственно и величины поверхностной энергии у них в 10–20 раз выше[22]. Не замечаем же мы поверхностного натяжения в твердых телах не потому, что оно слабое, а потому, что твердые тела слишком жестки, чтобы их форма заметно искажалась силами поверхностного натяжения.

Теперь, подобно тому, как мы стали бы вычислять вес самого большого комара, способного шагать по данной жидкости, попытаемся определить, сколь прочным должен быть тот или иной материал. Начав эти расчеты, основанные на вышесказанном, мы с удивлением обнаружим, что они очень простые.

Попробуем найти напряжение, которое необходимо для разделения в объеме материала двух примыкающих один к другому атомных слоев. Пока нам безразлично, какой материал рассматривать, кристаллический или аморфный. По существу все, что нам нужно знать, - это величины модуля Юнга и поверхностной энергии.

Итак, положим, что два слоя атомов вначале находятся на расстоянии x см один от другого, тогда энергия деформации на квадратный сантиметр при напряжении и деформации может быть найдена следующим образом: 1/2·(Напряжение·Деформация·Объем)=1/x Но по закону Гука E=, то есть = / E.

Заменяя в первом равенстве через / Е, получим Энергия деформации на квадратный сантиметр = 2x/ 2E.

Если G есть поверхностная энергия твердого тела на 1 см2, то общая энергия двух поверхностей, образовавшихся при разрушении, будет 2G на 1 см2.

Теперь предположим, что по достижении нашей теоретической прочности а, вся энергия деформации в объеме между двумя слоями атомов переходит в поверхностную энергию, то есть *2x/2E = 2G Отсюда *= (GE/x)1/2.

Правда, мы немного завысили теоретическую прочность, так как предполагали, что материал подчиняется закону Гука вплоть до разрушения. Ведь в предыдущей главе мы видели, что закон Гука верен лишь для малых деформаций, а при больших деформациях кривая зависимости межатомной силы от деформации отклоняется вниз от прямой. Поэтому энергия деформации будет меньше найденной нами энергии, грубо говоря, вдвое. Чтобы учесть это, мы просто опустим двойку в выведенной нами формуле, имея в виду, что мы не претендовали на получение точной величины прочности. Следовательно, правдоподобную оценку прочности материала должно давать выражение *= 2(GE/x)1/2 проще которого едва ли что можно придумать.

Поделиться:
Популярные книги

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Всадник Системы

Poul ezh
2. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадник Системы

Единственная для темного эльфа 3

Мазарин Ан
3. Мир Верея. Драконья невеста
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Единственная для темного эльфа 3

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Цвет сверхдержавы - красный. Трилогия

Симонов Сергей
Цвет сверхдержавы - красный
Фантастика:
попаданцы
альтернативная история
8.06
рейтинг книги
Цвет сверхдержавы - красный. Трилогия

Пять попыток вспомнить правду

Муратова Ульяна
2. Проклятые луной
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Пять попыток вспомнить правду

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности