Чтение онлайн

на главную - закладки

Жанры

Пока алгебра не разлучит нас. Теория групп и ее применение
Шрифт:

Один из их этюдов особенно помог мне избавиться от тоски, охватившей меня в джунглях. Музыка стала путеводной нитью моих «Мифологик». Сперва я думал, что музыка поможет организовать сложный материал со множеством вариаций одной и той же темы. Все мы поступаем так же — даже вы, господин Вейль, в своих записках не обошли музыку стороной. Последняя глава — это балет-буфф с прелюдией, фугой и интермеццо. Впрочем, я вскоре обнаружил еще одну, более глубокую причину: когда просветительскую функцию древних мифов взяли на себя романы, музыка пришла на смену агонизирующей мифологии. Должно быть, именно эта мысль сыграла ключевую роль в создании тетралогии «Кольцо Нибелунгов» Вагнера.

ВЕЙЛЬ: Вернемся к теме нашего разговора. Позвольте напомнить:

только что вы сами сказали, что если мы отсчитаем 13 клавиш от данной ноты, то получим прежнюю ноту, но на октаву выше. Октава делится на 12 частей. Благодаря этому принципу теория групп может сыграть интересную роль в изучении музыкальной гармонии. На самом деле мы используем одну и ту же ноту, например ля, для обозначения разных звуков, отстоящих друг от друга на одну октаву.

Не будем далеко ходить за примером — на клавиатуре пианино восемь разных ля, и, по сути, мы могли бы сдвигать их на одну октаву выше и ниже до бесконечности, если бы человеческие уши различали неограниченный диапазон частот. Согласно приведенным выше вычислениям, будем называть нотой ля все ноты с частотой 33, 110, 220, 440, 880, 1760 Гц и так далее. Эта ситуация вовсе не нова — вспомните, когда я рассказывал о группе часов, то объяснил, что при взгляде на циферблат мы никак не можем различить шесть утра, шесть вечера, шесть утра следующего дня и шесть вечера предыдущего дня. Одна октава вверх — двенадцать часов вперед. Одна октава вниз — двенадцать часов назад. Нет никакой разницы! Поэтому очень удобно представить клавиатуру пианино в виде так называемого додекафонического круга.

114

ЛЕВИ-СТРОСС: Интервал, отделяющий каждую ноту круга от соседней, называется полутоном. Как и следовало ожидать, два полутона образуют тон, а три полутона — так называемую малую терцию. Более того, в классической музыке свое название имеет каждый интервал.

3 - Малая терция

4 - Большая терция

5 - Чистая кварта

6 - Тритон

7 - Чистая квинта

8 - Малая секста

9 - Большая секста

10 - Малая септима

11 - Большая септима

12 - Чистая октава

Обратите внимание, что квинта состоит из семи полутонов, а им соответствуют ровно восемь клавиш пианино, которые мы отсчитывали от данной ноты.

ВЕЙЛЬ: Как вам известно, транспонирование мелодии заключается в прибавлении (или вычитании) фиксированного числа полутонов к каждой ноте. Допустим, что по какой-то причине нам нужно повысить на одну квинту три ноты, которые повторяются в первых тактах «Лунной сонаты» Бетховена.

Первые ноты «Лунной сонаты« Бетховена.

115

Это ноты соль-диез, до-диез и ми. Прибавив к ним семь полутонов, получим ре-диез, соль-диез и си. Произвести нужные расчеты на пальцах несложно, но представьте, что вам нужно транспонировать всю сонату целиком! Здесь крайне полезной окажется модель, основанная на теории групп. Чтобы транспонировать всю сонату, достаточно повернуть додекафонический круг на семь полутонов против часовой стрелки. Что скажете?

Транспонирование на одну квинту.

Записав внутри круга исходные ноты, мы получим искомое соответствие, которое поможет нам транспонировать мелодию без особого труда. Посмотрите, как просто транспонировать этим способом прекрасный лейтмотив «Паваны» Габриэля Форе:

Применив

новый метод, мы в мгновение ока преобразуем исходную последовательность нот

фа-диез — соль-диез — ля — си — ля — соль-диез — ля — фа-диез — соль-диез — ля — соль-диез — фа-диез — соль-диез — ми — фа-диез — фа — до-диез

в последовательность

116

до-диез — ре-диез — ми — фа-диез — ми — ре-диез — ми — до-диез — ре-диез — ми — ре-диез — до-диез — ре-диез — си — до-диез — до — соль-диез.

ЛЕВИ-СТРОСС: Впечатляюще, господин Вейль! Однако мне не дает покоя один вопрос. Сначала мы сказали, что восприятие мелодии не изменится, если мы умножим частоты всех нот на некий общий множитель, а теперь мы прибавляем к нотам полутона. Быть может, эти две операции совпадают?

ВЕЙЛЬ: Прекрасный вопрос. Действительно, в начале разговора мы указали, что отношение частот двух последовательных нот неизменно. Именно благодаря этому мы смогли записать таблицу частот начиная с ноты ля. Обратите внимание, что разность двух последовательных частот вовсе не постоянна. Разница частот нот до и до-диез равна 277,18 — 261,63 = 13,55 Гц, а разница между частотами нот ля-диез и си равна 493,88 — 466,16 = 27,72 Гц — почти в два раза больше! Чтобы преобразовать произведения в суммы, а отношения — в разности, нужно использовать логарифмы. По всей видимости, первым важность логарифмов в музыкальных расчетах понял Исаак Ньютон. Позвольте мне вкратце напомнить вам, что такое логарифм — возможно, в последний раз вам объясняли это почти сто лет назад.

Для двух положительных чисел а и b логарифмом а по основанию b (обозначается logb(a)) называется степень, в которую нужно возвести b, чтобы получить а.

Иными словами, с — логарифм а по основанию b, если числа а, b и с удовлетворяют соотношению bc = а. К примеру, известно, что log2(4) = 2, log2(8) = 3, так как 22 = 4, а 23 = 8. Вычислить логарифмы не всегда так легко. Нужно понимать, что логарифм преобразует частное в разность:

logb(x/y) = logb(x) - logb(y)

Продолжим рассматривать наш пример. Если основание логарифма равно b = 2, х = 8 и у = 4, то их частное равнялось бы 2, следовательно, левая часть выражения была бы равна log2(2) = 1. С другой стороны, мы уже знаем, что log2(8) = 3, log2(4) = 2.

В этом случае формула вновь оказывается верной, так как 1 = 3 — 2. Эту формулу можно доказать в общем виде, применив основные свойства степеней. Попробуйте сами!

Мы знаем, что отношения частот последовательных нот совпадают, следовательно, логарифмы этих отношений также будут равны:

117

logb(f2/f1) = logb(f3/f4) = ... = logb(f13/f12)

С учетом приведенной выше формулы получим

logb(f2) - logb(f1) = logb(f3) - logb(f2) = ... = logb(f13) - logb(f12)

Поделиться:
Популярные книги

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Самый богатый человек в Вавилоне

Клейсон Джордж
Документальная литература:
публицистика
9.29
рейтинг книги
Самый богатый человек в Вавилоне

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

(не)желанный брак, или Космический приют для хищных растений

Лунёва Мария
Фантастика:
юмористическая фантастика
5.50
рейтинг книги
(не)желанный брак, или Космический приют для хищных растений

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход