Понимать риски. Как выбирать правильный курс
Шрифт:
Предположим, вы участвуете в игровом шоу, и вам предлагают выбрать одну из трех дверей. За одной находится автомобиль, а за двумя другими – обыкновенные козы. Допустим, вы выбираете дверь номер 1. Ведущий знает, что находится за этой дверью, но открывает другую дверь, например дверь номер 3, за которой вы видите козу, и обращается к вам: «А вы не хотите выбрать дверь номер 2?» Выгодно ли вам изменить свое первоначальное решение?
Вы будете менять выбранную ранее дверь на другую? Если нет, то вы поступите так, как в подобной ситуации поступает большинство людей. Ведь осталось всего две двери, поэтому шансы на выигрыш и проигрыш выглядят одинаковыми, и, если вы совершите ошибку, изменив свой изначальный выбор, и укажете на дверь, за которой стоит коза, это может вызвать горькие сожаления.
Мэрилин советовала изменить первоначальный выбор. Этот совет вызвал шквал писем, не утихавший в течение целого года. Около тысячи писем написали люди с учеными степенями, высказав свое несогласие с ней. Профессор математики Роберт Сакс из Университета Джорджа Мейсона писал: «Вы говорите ерунду! Позвольте мне объяснить. Если вам показывают, что одна из дверей не скрывает главного приза,
Рис. 7.1. Задача Монти Холла
Риск: стоит ли менять выбор двери?
Доктор Сакс, как и многие другие, запутался в вероятностях. Типичный ход размышлений выглядит так: «Вероятность, что машина находится за любой из трех дверей, равна одной трети. Одна дверь была открыта, что устраняет из рассмотрения и ее, и одну треть вероятности. Теперь, когда машина находится за одной из двух дверей, шансы на выигрыш нужно разделить поровну между этими двумя дверями, то есть они составят 50:50». Это одна из известных «когнитивных иллюзий», которая прочно засела в нашем мозгу {113} .
113
В своей книге «Inevitable Illusions» (1994) Пьятеллт-Пальмерини называл задачу Монти Холла когнитивной иллюзией, в ловушку которой попадают даже «лучшие и наиболее образованные умы» (p. 161).
Разобраться во всем этом нам поможет простой метод, подобный тому, о котором мы упоминали, когда речь шла о ВИЧ-тестировании: метод, в основе которого заложено использование значений естественной частоты [17] . Позвольте мне пояснить, что это такое, применительно к задаче Монти Холла.
Очень важно в данном случае учитывать, что в конкурсе принимают участие сразу несколько человек, а не один. Допустим, их трое, и все они выбирают разные двери. Пусть машина находится за дверью 2 (рис. 7.2). Первый участник выбирает дверь 1. В этом случае Монти ничего не остается, кроме как открыть дверь 3 и предложить участнику изменить свой первоначальный выбор. Изменение выбранной двери на дверь 2 будет выигрышным. Допустим, второй участник выбирает дверь 3. На этот раз Монти должен открыть дверь 1, и если он изменит свой выбор и предпочтет дверь 2, то это позволит ему получить главный приз. Только третий участник, сразу выбравший дверь 2, проиграет, если изменит первоначальный выбор. Такой подход помогает понять, что изменить первоначально выбранный вариант чаще выгоднее, чем его сохранить. Можно точно рассчитать, как часто это происходит: в двух случаях из трех {114} . Вот почему Мэрилин рекомендовала изменять первоначальный выбор.
17
Более подробно о том, какой смысл заложен в понятие «естественные частоты», см. Глоссарий.
114
Сравните это решение со стандартным решением в терминах вероятностей, используя правило Байеса. Рассмотрим ситуацию, когда участник сначала выбирает дверь 1, а Монти Холл открывает дверь 3 и показывает козу. Здесь мы хотим узнать вероятность
p(Машина 1 |Монти 3) того, что машина находится за дверью 1 после того, как Монти открыл дверь 3: p(Машина 1 |Монти 3)=p(Машина 1)p(Монти 3 |Машина 1)/[p(Машина 1)p(Монти 3 |Машина 1)+p(Машина 2)
p(Монти 3 |Машина 2)+p(Машина 3)p(Монти 3 |Машина 3)]= 1/3 ' 1/2/[1/3 ' 1/2 + 1/3 ' 1 + 1/3 ' 0] = 1/3
То есть вероятность того, что машина стоит за дверью 1, остается неизменной, и, таким образом, вероятность того, что машина находится за дверью 2, увеличивается до 2/3.
Вероятности p(Машина 1), p(Машина 2) и p(Машина 3) называются априорными вероятностями, а p(Машина 1 |Монти 3) называется апостериорной вероятностью.
Условная вероятность p(Монти 3 |Машина 1 |) того, что Монти откроет дверь 3, если машина стоит за дверью 1, равняется 1/2, потому что Монти может выбирать между дверью 2 и дверью 3, и предполагается, что этот выбор происходит случайным образом. Условная вероятность p(Монти 3 |Машина 2) того, что Монти откроет дверь 3, если машина стоит за дверью 2, равна 1, так как Монти не имеет выбора, потому что он не может открыть дверь 1. Наконец, p(Монти 3 |Машина 3) равна нулю, потому что Монти не может показать машину участнику. Такое количество объяснений и вычислений показывает, почему люди часто оказываются сбитыми с толку, когда начинают
Задача Монти Холла обсуждалась на вечеринках, в учебных аудиториях и на первой странице New York Times, заставляя людей вести споры о вероятностях событий. За долгое время показа этого игрового шоу за дверями Монти Холла могли быть оставлены миллионы долларов. Здесь я лишь постарался показать, что все эти споры легко могут быть улажены при рассуждении в терминах естественных частот. Проблема находится не просто в человеческом разуме, но и в том способе, прибегая к которому используется информация.
Рис. 7.2. Иллюстрация решения задачи Монти Холла
Позвольте теперь рассказать вам вторую, мало кому известную часть этой истории.
Неопределенность: будет ли изменение первоначального выбора двери наилучшим решением в реальном игровом шоу?
Задача Монти Холла, сформулированная Мэрилин и другими исследователями, имеет отношение к миру риска, а не к миру неопределенности. Теория вероятностей дает наилучший ответ, только когда правила игры четко определены, когда все альтернативные варианты, последствия и вероятности известны или могут быть рассчитаны. Так будет ли изменение первоначального варианта выбора наилучшим решением в реальном игровом шоу?
И тут встает очень важный вопрос: всегда ли Монти предоставлял своим гостям возможность поменять начальный выбор {115} ? (Об этом обстоятельстве не упоминалось в исходной задаче Мэрилин, но здесь речь идет о другом.) Например, если бы Монти был по натуре вредным человеком, он мог бы делать такое предложение, только когда участники выбирали дверь, за которой стоял главный приз. Изменение первоначального выбора означало бы, что участники гарантированно получат козу, что позволило бы NBC сохранить «кадиллак» для следующей передачи. Но предоставлял ли Монти каждому участнику возможность изменить свой выбор?
115
Это предположение может быть ослаблено и представлено так: Монти не всегда открывает дверь, но его предложение не зависит от того, какую дверь выбрал участник. Интервью в следующем абзаце полностью приводится в работе: D. Friedman, 2004.
Барри Нейлбаф одним из первых написал о задаче Монти Холла. Он вспоминал, что видел, как Монти предлагал изменять выбор. Но он не мог вспомнить, «действительно ли Монти предоставлял такую возможность каждый раз, и вообще было ли его предложение связано с тем, правильно ли участник выбрал дверь или нет». Кэрол Эндрюс, многолетняя помощница Монти, напротив, утверждала, что Монти никогда не предоставлял участникам возможность изменить первоначальный выбор. Сам Монти Холл вспоминал, что он редко это предлагал, и не мог вспомнить, как часто его предложение принималось. О том, что происходило в действительности, мы можем никогда не узнать. Из-за судебной тяжбы по поводу прав на передачу немногие записи остаются доступными широкой публике.
Источником неопределенности является не только несовершенная память Монти и его коллег. Реальное игровое шоу непосредственно зависело от характера Монти Холла, который время от времени принимал спонтанные решения, а не строго следовал заданному сценарию. Другими словами, интрига в игре поддерживалась неуверенностью участников в мотивах действий ведущего, и эта интрига исчезла бы, если бы в каждой передаче он действовал по одним и тем же правилам. «Где написано, что я должен позволять вам менять ваш выбор каждый раз? В этом шоу я сам себе хозяин». Монти дал ясно понять, что правила, подразумеваемые задачей Монти Холла, неприменимы лично к нему. «Если ведущий обязан каждый раз открывать дверь и предлагать вам изменить ваш выбор, то вы вынуждены принимать решение. Но если он имеет право предлагать или не предлагать вам такую возможность, то берегитесь. Caveat emptor [18] . Все зависит от настроения ведущего».
18
«Пусть покупатель остерегается» – юридический принцип, предполагающий ответственность покупателя товаров по проверке их качества, соответствия его целям, права собственности и т. д., то есть весь риск покупки товаров возлагается на покупателя, а не на продавца.
Останется ли наилучшее решение в условиях известного риска наилучшим в реальном шоу? Как объяснял сам Монти, оно может оказаться наихудшим. Однажды, после того как один участник выбрал дверь 1, Монти открыл дверь 3, за которой была коза. В то время как участник размышлял над предложением отказаться от начального выбора и выбрать дверь 2, Монти предложил ему 3 тыс. долларов наличными за то, что тот сохранит свой первоначальный выбор {116} .
«Я бы изменил свой выбор», – настаивал участник.
«Три тысячи долларов, – повторил Монти Холл. – Наличными. Живыми деньгами. Там может быть машина, но там может быть и коза. Четыре тысячи».
Участник устоял и перед этим искушением: «Я хочу выбрать дверь 2».
«Четыре тысячи пятьсот. Четыре тысячи семьсот. Четыре тысячи восемьсот. Мое последнее предложение: пять тысяч долларов».
«Давайте откроем дверь», – настаивал участник, вновь отвергая предложение Монти.
«Тогда вы получаете козу, – сказал Монти Холл, открывая дверь. Затем он воскликнул: – Теперь вы видите, что случилось! Чем больше денег я предлагал, тем сильнее вы были уверены в том, что за дверью 2 находится машина. Я хотел убедить вас отказаться от начального выбора, так как знал, что машина стоит за дверью 1. Я делаю такие штуки, когда имею возможность контролировать ход игры».
116
Friedman D., Nakhoda A., 2008.