Чтение онлайн

на главную - закладки

Жанры

Программирование игр и головоломок
Шрифт:

Покажем теперь, что нужно обязательно взять s' =1, s" = s. По выбору u и v

b = 2k+t– 2s' - s" < а = 2k.

Отсюда получаем:

s" > 2k+t– 2s' - 2k,

и, так

как t >= 1:

s" > 2k– 1s' - 2k,

s = s's" > 2k– 1s'2– 2ks = 2k– 1s' (s' - 2).

Вследствие р = s2t < а = 2k выводим s < 2kt <= 2k– 1.

Объединим два полученных неравенства:

2k– 1s' (s' - 2) < x < 2k– 1, поэтому s' (s' - 2) < 1.

Единственное нечетное число s', удовлетворяющее этому соотношению, это s' = 1. Следовательно, у нас остается единственная возможность:

u = 2k+t– 2, v = s,

b = uv = 2k+t– 2s < а = 2k,

s > 2k+t– 2– 2k.

Так как s < 2kt, то t должно быть таким, чтобы

2kt > 2k+t– 2– 2k.

Поскольку t должно быть строго положительно, то его единственными возможными значениями являются t = 1 и t = 2.

При t = 1 имеем

p = 2s, b = 2kts = a/2 - p/2.

Следовательно, если 2b = аp, то n — квадрат числа (а + p)/2 = аb.

При t = 2 имеем

p = 4s, b = 2ks = ap/4.

Следовательно,

если p = 4(ab), то n — квадрат числа a + p/4 = 2аb.

Этим исчерпываются случаи, когда n может быть полным квадратом.

Можно спросить себя, могут ли эти различные случаи действительно осуществляться. Заметим, что при вступлении в цикл у нас b = 1, a = 4. После этого b может быть изменено добавлением а, т. е. кратным числа 4. Следовательно, b остается сравнимым с 1 по модулю 4. В трех возможных случаях:

p = 0, r = b,

p = а– 2b, r = ab,

p = 4 (ab), r = 2ab,

первый случай — единственный, в котором квадратный корень из n сравним с 1 по модулю 4; два других дают квадратный корень, сравнимый с 3 по модулю 4. При выходе из цикла равенство

b = ар + b2

с учетом соотношений p < a, b < a дает n < 2a2 и, следовательно, при выходе из цикла a2 > n/2. Равенство

ар = nb2

дает p = (nb2)/a < n/а.

Если окажется, что n/а < a, то непременно p < а и цикл закончен. Чтобы цикл остановился, необходимо, чтобы a2 > n/2, и цикл заведомо останавливается, если a3 > n.

Следовательно, все зависит от положения n по отношению к степеням двойки. Существует такое целое n, что

4q < n < 4q+1.

Возможны два случая. Во-первых, может выполняться неравенство

4q = 22q < n < 22q+1,

и тогда для k = q число a2 = 22q > n/2 может быть значением остановки, но в этом нет уверенности. С другой стороны, если

Поделиться:
Популярные книги

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри