Prolog
Шрифт:
"защищает" следующее за ним условие
не работает( Прибор)
от неконкретизированной переменной.
Упражнение
14. 3. База знаний может, в принципе, содержать циклы. Например:
прав1: если бутылка_пуста то джон_пьян.
прав2: если джон_пьян то бутылка_пуста.
Работая с подобной базой знаний, наша процедура рассмотреть может зациклиться на обработке одних и тех же целей. Внесите в процедуру рассмотреть изменения, предотвращающие зацикливание. Используйте для этого объект Трасса. Однако соблюдайте осторожность: если текущая цель сопоставима с одной из предыдущих целей, то такую ситуацию следует рассматривать как цикл только в том случае, когда текущая цель имеет большую,
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
14. 6. Работа с неопределенностью
14. 6. 1. Степень достоверности
Наша оболочка экспертной системы, описанная в предыдущем разделе, может работать только с такими вопросами (утверждениями), которые либо истинны, либо ложны. Предметные области, в которых на любой вопрос можно ответить "правда" или "ложь", называются категорическими. Наши правила базы знания (также, как и данные) были категорическими, это были "категорические импликации". Однако многие области экспертных знаний не являются категорическими. Как правило, в заключениях эксперта много догадок (впрочем, высказанных с большой уверенностью), которые обычно верны, но могут быть и исключения. Как данные, относящиеся к конкретной задаче, так и импликации, содержащиеся в правилах, могут быть не вполне определенными. Неопределенность можно промоделировать, приписывая утверждениям некоторые характеристики, отличные от "истина" и "ложь". Характеристики могут иметь свое внешнее выражение в форме дескрипторов, таких, как, например, верно, весьма вероятно, вероятно, маловероятно, невозможно. Другой способ: степень уверенности может выражаться в форме действительного числа, заключенного в некотором интервале, например между 0 и 1 или между -5 и +5. Такую числовую характеристику называют по-разному - "коэффициент определенности", "степень доверия" или "субъективная уверенность". Более естественным было бы использовать вероятности (в математическом смысле слова), но попытки применить их на практике приводят к трудностям. Происходит это по следующим причинам:
Экспертам, по-видимому, неудобно мыслить в терминах вероятностей. Их оценки правдоподобия не вполне соответствуют математическому определению вероятностей.
Работа с вероятностями, корректная с точки зрения математики, потребовала бы или какой-нибудь недоступной информации, или каких-либо упрощающих допущений, не вполне оправданных с точки зрения практического приложения.
Поэтому, даже если выбранная мера правдоподобия лежит в интервале 0 и 1, более правильным будет называть ее из осторожности "субъективной уверенностью", подчеркивая этим, что имеется в виду оценка, данная экспертом. Оценки эксперта не удовлетворяют всем требованиям теории вероятностей. Кроме того, вычисления над такими оценками могут отличаться от исчисления вероятностей. Но, несмотря на это, они могут служить вполне адекватной моделью того, как человек оценивает достоверность своих выводов.
Для работы в условиях неопределенности было придумано множество различных механизмов. Мы будем рассматривать здесь механизм, используемый в системах Prospector и AL/X для минералогической разведки и локализации неисправностей соответственно. Следует заметить, что модель, применяемая в системе Prospector, несовершенна как с теоретической, так и с практической точек зрения. Однако она использовалась на практике, она проста и может служить хорошей иллюстрацией при изложении основных принципов, а потому вполне подойдет нам, по крайней мере для первого знакомства с этой областью. С другой стороны, известно, что даже в значительно более сложных моделях не обходится без трудностей.
14. 6. 2. Модель Prospector'а
Достоверность событий моделируется с помощью действительных чисел, заключенных в интервале между 0 и 1. Для простоты изложения мы будем называть их "вероятностями", хотя более точный термин "субъективная уверенность". Отношения между событиями можно представить графически в форме "сети вывода". На рис. 14.14 показан пример сети вывода. События изображаются прямоугольниками, а отношения между ними - стрелками. Овалами изображены комбинации событий (И, ИЛИ, НЕ).
Мы будем считать, что отношения между событиями (стрелки) являются своего рода "мягкими импликациями". Пусть имеются два события E и H,
если Е то H
В случае же "мягкой импликации" это отношение может быть менее определенным, так что ему можно приписать некоторую "силу", с которой оно действует:
если E то H с силой S
Та сила, с которой достоверность Е влияет на уверенность в H, моделируется в системе Prospector при помощи двух параметров:
N = "коэффициент необходимости"
S = "коэффициент достаточности"
Рис. 14. 14. Сеть вывода системы AL/X (заимствовано
из Reiter (1980) ).
Числа, приписанные прямоугольникам, - априорные
вероятности событий; числами на стрелках задается
"сила" отношений между событиями.
В сети вывода это изображается так:
E ------------> H
(N, S)
Два события, участвующие в отношении, часто называют "фактом" и "гипотезой" соответственно. Допустим, что мы проверяем гипотезу H. Тогда мы будем искать такой факт Е, который мог бы подтвердить либо опровергнуть эту гипотезу. S говорит нам, в какой степени достаточно факта Е для подтверждения гипотезы H; N– насколько необходим факт Е для подтверждения гипотезы Н. Если факт Е имел место, то чем больше S, тем больше уверенности в H. С другой стороны, если не верно, что имел место факт Е, то чем больше N, тем менее вероятно, что гипотеза H верна. В случае, когда степень достоверности Е находится где-то между полной достоверностью и невозможностью, степень достоверности H определяется при помощи интерполяции между двумя крайними случаями. Крайние случаи таковы:
(1) известно, что факта Е не было
(2) известно, что факт Е имел место
(3) ничего не известно относительно Е
Для каждого события H сети вывода существует априорная вероятность р0(Н) (безусловная) вероятность события H в состоянии, когда неизвестно ни одного положительного или отрицательного факта. Если становится известным какой-нибудь факт E, то вероятность H меняет свое значение с р0(Н) на р(Н | Е). Величина изменения зависит от "силы" стрелки, ведущей из E в H. Итак, мы начинаем проверку гипотез, принимая их априорные вероятности. В дальнейшем происходит накопление информации о фактах, что находит свое отражение в изменении вероятностей событий сети. Эти изменения распространяются по сети от события к событию в соответствии со связями между событиями. Например, рассмотрим рис. 14.14 и предположим, что получена информация о срабатывании индикатора открытия выпускного клапана. Эта информация повлияет на нашу уверенность в том, что выпускной клапан открылся, что, в свою очередь, повлияет на уверенность в том, что сместилась установка порогового давления.