Психология оценки и принятия решений
Шрифт:
С вероятностью
11%
— 1000 000 долл.
С вероятностью
89%
— ничего
Альтернатива
Б:
С вероятностью
10%
— 2 500 000 долл.
С вероятностью
90%
— ничего
Что вы выберете в этом случае 9(Взгляните на ваш ответ в п. 28(6) Анкеты ) Большинство людей выбирает альтернативу Б. (115:)
Они обычно полагают, что нет особой разницы между 10%-ным и 11%-ным шансом на победу, но зато есть большая разница между 1000 000 и 2 500 000 долларов Кроме того, альтернатива Б имеет большую ожидаемую ценность. Ожидаемая
Чтобы увидеть, как принцип погашения оказывается несостоятельным, представьте, что выигрыш в каждой альтернативе определяется 100 цветными шарами, из которых 89 красных, 10 белых и 1 синий В первом случае в альтернативе А выигрыш 1000 000 долларов получается при выпадении красного, белого или синего шара (другими словами — любого); а в альтернативе Б 1 000 000 долларов соответствует красному шару, 2 500 000 долларов — белому шару и ничего — синему (см. рис 8.1). По той же логике во втором случае в альтернативе А красному шару
2,5 Мдолл
РИСУНОК 8.1. Иллюстрация парадокса Аллайса (основана на свободном исследовании Вебер и опросе Пула 1988 года)
116
соответствует 0 долларов, а белому или синему — 1 000 000 долларов; в альтернативе Б 0 долларов соответствует красному или синему шару, а 2 500 000 — белому.
Таким образом, вы можете увидеть, что оба раза предлагаются идентичные альтернативы, не считая того, что в первом случае вы получаете за красный шар 1 000 000 долларов, какую бы вы альтернативу ни выбрали, а во втором — 0 долларов в обоих альтернативах. В обоих случаях белые и синие шары в альтернативе А стоят по 1 000 000 долларов, а в альтернативе Б — белые стоят 2 500 000 долларов, а синие 0 долларов. Альтернатива А в первом случае идентична альтернативе А во втором случае (не считая 89%-ного шанса получить 1 000 000 долларов), и альтернатива Б в первом случае идентична альтернативе Б во втором случае (не считая тех самых 89% — шанса получить выигрыш 1 000 000 долларов).
Таким образом, добавление одинаковых условий — красного шара, стоящего 1 000 000 долларов, в первом случае и красного шара, стоящего 0 долларов, во втором — заставляет многих людей делать разный выбор в первом и втором случаях. Эта разница показывает несостоятельность принципа погашения, утверждающего, что выбор между двумя возможностями должен основываться только на том, чем они различаются, а не на факторах, общих для них обоих.
Парадокс Эллсберга
Другое известное опровержение принципа погашения было зафиксировано Дэниелом Эллсбергом в 1961 году. Парадокс Эллсберга (как он сейчас называется) состоит в следующем. Представьте урну, в которой находятся 90 шаров. Из них 30 — красные, а остальные 60 — либо черные, либо желтые — в неизвестной пропорции. Один шар вынут из урны, и от цвета этого шара зависит ваш выигрыш в соответствии с рис. 8.2а.
Какой бы цвет вы хотели назвать выигрышным — черный или красный? Большинство людей выбирает красный, потому что число черных и желтых шаров неизвестно. Но представьте, что схема лотереи приведена на рис. 8.26. Что же вы выберете теперь? На этот раз большинство людей предпочитает черный или желтый шар, а не красный или желтый, поскольку
117
РИСУНОК 8.2а
Эта схема выплат для первой части парадокса Эллсберга.
30 ШАРОВ
60
ШАРОВ
Альтернатива
для ставки
красный
черный
желтый
Альтернатива 1: Альтернатива 2:
красный шар черный шар
$100 $0
$0$100
$0 $0
РИСУНОК 8.26
Эта схема выплат для второй части парадокса Эллсберга. Единственная перемена — желтый шар теперь стоит $100, а не $0.
30 ШАРОВ
60
ШАРОВ
Альтернатива
для ставки
красный
черный
желтый
Альтернатива 1: Альтернатива 2:
красный шар черный шар
$100 $0
$0$100
$100 $100
рают альтернативу 1 в первом случае и альтернативу 2 — во втором.
Согласно принципу погашения, однако, люди должны выбирать одинаковые альтернативы и в том и в другом случае. Как видно на рис. 8.2, две схемы выигрыша абсолютно идентичны, не считая того, что в первом случае желтый шар не приносит ничего, а во втором — 100 долларов. Поскольку ценность желтого шара одинакова внутри одной схемы (0 долларов в первом случае и 100 долларов — во втором), цена желтого шара не должна влиять на выбор в каждом случае (так же, как одинаковая скорость не должна влиять на выбор между двумя машинами). Однако вопреки теории ожидаемой выгоды, люди часто выбирают различные альтернативы в двух случаях.
Нетранзитивность
Другой принцип рационального принятия решений — принцип транзитивности, который говорит о том, что тот, кто предпочитает альтернативу А альтернативе Б и альтернативу Б — альтернативе В, должен предпочитать альтернативу А альтернативе В. В 7 главе показано, как человек, не соблюдающий принцип транзитивности, может быть использован в качестве «денежной помпы». Другой пример нетранзитивности показан на рис. 8.3. (118:)
РИСУНОК 8.3. Следующее правило принятия решений приводит к переходности предпочтения при выборе между претендентами А, Б и В: если разница в интеллигентности любых двух претендентов больше 10 пунктов — выбери более интеллигентного; если разница меньше или равна 10 пунктам, то более опытного.
ПОКАЗАТЕЛИ
Интеллигентность (IQ)
Опыт (годы)
ПРЕТЕНДЕНТЫ
А
Б
В
120
110
100
1
2
3
Представьте, что вам нужно выбрать одного из трех помощников (на рис. 8.3 они обозначены как помощники А, Б и В). О каждом из них вам известно, что он умен и опытен. Далее представьте, что у вас есть правило: если разница коэффициента умственного развития (IQ) у любых двух помощников более 10 пунктов, выбирать более умного. Если разница равна или меньше — выбирать более опытного.
Измена
Любовные романы:
современные любовные романы
рейтинг книги
Реванш. Трилогия
Фантастика:
альтернативная история
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
рейтинг книги
Хроники странного королевства. Двойной след (Дилогия)
79. В одном томе
Фантастика:
фэнтези
рейтинг книги
Ваше Сиятельство 3
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Вор (Журналист-2)
4. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Найдёныш. Книга 2
Найденыш
Фантастика:
альтернативная история
рейтинг книги
Идеальный мир для Лекаря 27
27. Лекарь
Фантастика:
аниме
фэнтези
рейтинг книги
Два мира. Том 1
Фантастика:
фэнтези
попаданцы
мистика
рейтинг книги
Картошка есть? А если найду?
1. Моё пространственное убежище
Фантастика:
боевая фантастика
рпг
постапокалипсис
рейтинг книги
Боярышня Дуняша
1. Боярышня
Фантастика:
попаданцы
альтернативная история
рейтинг книги
i f36931a51be2993b
Старинная литература:
прочая старинная литература
рейтинг книги
