Психология оценки и принятия решений
Шрифт:
Это звучит как вполне резонное правило, но взгляните, что выйдет, если следовать ему. Если сравнить помощника А и помощника Б, нужно выбрать второго, так как их IQ не отличается больше, чем на 10 пунктов, а Б более опытен, чем А. Также, сравнивая Б и В, нужно выбрать В, так как разница их IQ не больше 10, но В более опытен. Если сравнить В и А, то надо выбрать А, так как его IQ более чем на 10 пунктов выше, чем IQ В. Итак, помощник Б лучше помощника А, В — лучше Б, а А — лучше В. Таким образом, появляется нетранзитивность, поскольку правило
Действительно ли люди опровергают принцип нетранзитивности? В 1969 году Амос Тверски опубликовал исследование, одна треть участников которого поступала нетранзитивно. Тверски начал эксперимент с того, что ознакомил 18 Гарвардских дипломников с пятью лотереями, представленными на рис. 8.4. Как вы можете видеть, ожидаемая ценность каждой лотереи повышается шансом на выигрыш и понижается его размером. Студентам наугад показывали пары лотерей и просили сказать, какую бы они предпочли. После того как они сделали три вы-
119
РИСУНОК 8.4
Следующие азартные игры были использованы в 1969 году в эксперименте Амоса Тверски. Ожидаемая ценность (ОЦ) каждой игры вычислена путем умножения суммы выигрыша на вероятность победы.
Игра
Вероятность победы
Стоимость ($)
ОЦ (*
А
7/24
5,00
1,46
Б
8/24
4,75
1,58
В
9/24
4,50
1,69
Г
10/24
4,25
1,77
Д
11/24
4,00
1,83
бора из 10 возможных пар (А и Б, А и В и т.д.),Тверски выбрал 8 испытуемых, показавших тенденцию к нетранзитивности, и попросил их приходить к нему в лабораторию раз в неделю для интенсивного пятинедельного эксперимента.
Он обнаружил, что шесть студентов демонстрировали нетранзитивность с постоянством, заслуживающим лучшего применения. Из двух альтернатив, где вероятность выигрыша различалась мало (например, в паре А и Б), они выбирали ту лотерею, где выигрыш был больше. И наоборот, когда разница была максимальной (например, в паре А и Д), испытуемые выбирали ту лотерею, где вероятность выигрыша была выше. Итак, лотерею А они предпочитали лотерее Б, лотерею Б — лотерее В, лотерею В — лотерее Г, лотерею Г — лотерее Д, а лотерею Д — лотерее А. Тверски обнаружил непереходность в примере с помощниками.
Нетранзитивность — это нечто большее, чем просто экспериментальный курьез; она может иметь важное влияние на принимающих решение. Например, «проблема комитета». В ее типичной версии существует совет факультета, состоящий из пяти человек: Энн, Боба, Синди, Дэна и Эллен. Их задача — выборы
РИСУНОК 8.5
Это распределение предпочтений в типичной версии проблемы комитета. Более низкие баллы обозначают большее предпочтение (например, Энн предпочитает, скорее, Джо Шмоу нежели Джейн Доу, и Джейн Доу — нежели Эйнштейна).
ЧЛЕНЫ КОМИССИИ
Кандидаты
Энн
Боб
Синди
Дэн
Эллен
Джо Шмоу Джейн Доу Эйнштейн
1 2 3
1 3 2
2 3 1
3 1 2
3 1 2
120
Представьте, что вы глава комитета, вы знаете всех претендентов и хотели бы, чтобы выбрали Эйнштейна. Что вы сделаете?
Ответ следующий: вы должны избежать прямого выбора между Эйнштейном и Джейн Доу, потому что трое членов комитета предпочли Доу Эйнштейну (Энн, Дэн и Эллен). Вместо этого вы должны попросить членов комитета выбрать между Шмоу и Доу и после того, как Шмоу победит, попросить выбрать между Шмоу и Эйнштейном. С другой стороны, если вы хотите победы Доу, вы должны сперва провести голосование между Шмоу и Эйнштейном, а потом между Эйнштейном и Доу. Поскольку выбор членов комиссии нетранзитивен при условии, что решает большинство, на основании парного сравнения, человек, определяющий повестку, имеет контроль над выборами.
Обратимость предпочтений
Если нетранзитивность не самое худшее, то в некоторых случаях предпочтения «обратимы» в зависимости от того, в каком порядке они были произведены. Одно из первых исследований, зафиксировавших необратимости предпочтения, было опубликовано Сарой Лихтенштейн и Полем Словиком в 1971 году. Лихтенштейн и Словик писали, что выбор между двумя лотереями может включать в себя более разнообразные психологические процессы, чем подсчет и оценка каждой из альтернатив в отдельности (т.е. установление количества долларов, как они выразились). Оба они предположили, что выбор должен в основном определяться шансами на выигрыш, тогда как оценка должна в первую очередь зависеть от суммы, которую можно выиграть или проиграть.
Они проверили эту гипотезу в трех экспериментах. В каждом опыте они сначала знакомили испытуемых с несколькими парами пари. Каждая пара имела близкие ожидаемые величины, но одна всегда имела высокую возможность выигрыша, а другая — высокую ставку (см. рис. 8.6). После того как испытуемые определяли, какое пари выбирают из каждой пары, они оценивали лотереи каждую в отдельности. Оценки собирались следующим образом: испытуемым говорили, что они стали обладателями лотерейного билета, и спрашивали, за какую минимальную сумму они бы согласились его продать. (121:)
Измена
Любовные романы:
современные любовные романы
рейтинг книги
Реванш. Трилогия
Фантастика:
альтернативная история
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
рейтинг книги
Хроники странного королевства. Двойной след (Дилогия)
79. В одном томе
Фантастика:
фэнтези
рейтинг книги
Ваше Сиятельство 3
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Вор (Журналист-2)
4. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Найдёныш. Книга 2
Найденыш
Фантастика:
альтернативная история
рейтинг книги
Идеальный мир для Лекаря 27
27. Лекарь
Фантастика:
аниме
фэнтези
рейтинг книги
Два мира. Том 1
Фантастика:
фэнтези
попаданцы
мистика
рейтинг книги
Картошка есть? А если найду?
1. Моё пространственное убежище
Фантастика:
боевая фантастика
рпг
постапокалипсис
рейтинг книги
Боярышня Дуняша
1. Боярышня
Фантастика:
попаданцы
альтернативная история
рейтинг книги
i f36931a51be2993b
Старинная литература:
прочая старинная литература
рейтинг книги
