Психология развития: методы исследования
Шрифт:
В таком исследовании нас в действительности не интересует главный эффект каждого из условий, эффект, который может быть обусловлен значимой разницей между любыми из возможных пар средних значений. Наш интерес более специфичен и ограничен сравнениями между средними значениями, которые важны для исследования. Мы, к примеру, захотим выяснить, отличается ли на уровне значимости каждое из экспериментальных условий от соответствующего ему контрольного, а также, различаются ли между собой три экспериментальных условия. Эти сравнения действительно имеют смысл. В других сравнениях гораздо меньше смысла — к примеру, бессмысленно сравнивать экспериментальное условие группового обсуждения и контрольное условие наблюдения поведения взрослого. Обобщенный дисперсионный анализ объединяет все эти сравнения. Конечно, можно начать
Альтернативой ДА в таких случаях служат плановые сравнения, когда мы заранее определяем, какие из средних значений будем сравнивать, и производим толь-
ко эти сравнения. В нашем гипотетическом исследовании обучения, к примеру, мы могли бы провести сравнение экспериментальных воздействий,, оставив без внимания другие сравнения. Разъяснение методов проведения такого избирательного сравнения не входит в намерения автора; описание их можно найти в большинстве учебников по статистике (например, Hays, 1981). Разумеется, такой подход влечет потерю некоторой информации. Однако если мы точно знаем, что нас интересует, потеря будет минимальной. А поскольку критерии, используемые в предварительно спланированных проверках, обладают большей мощностью, чем критерии post-hoc, наши шансы получить ясные вопросы на интересующие нас вопросы выше.
Важно подчеркнуть, что плановые сравнения действительно подразумевают планирование и избирательность; то-есть мы не можем сравнивать что.угодно. Каким должно быть количество сравниваемых пар — на этот счет специалисты в области статистики не имеют единого мнения. Одни из них рекомендуют ограничивать плановые сравнения статистически независимыми, или «ортогональными», парами. Количество таких независимых пар на одну меньше количества средних значений; в нашем исследовании обучения оно будет составлять 5 независимых сопоставлений (в упоминавшейся выше работе объясняется, как определить независимость сопоставлений (Hays, 1981)). Другие специалисты являются приверженцами несколько более либерального подхода, говоря о том, что интересные с теоретической точки зрения пары можно проверить даже при отсутствии полной их независимости. В работе Кеппел (Keppel, 1991) можно найти полезную информацию о разных точках зрения, а также ряд методов корректировки уровня вероятности в случаях, когда производятся множественные или частично пересекающиеся сравнения.
Величина эффекта
Цель плановых сравнений состоит в выявлении эффектов, которые могут упустить такие глобальные проверочные процедуры, как ДА. Процедура измерения величины эффекта снимает некоторые из ограничений ДА. В этом случае мы предполагаем, что при анализе был обнаружен значимый эффект; тогда встает вопрос, насколько он велик. Насколько сильна связь между зависимыми и независимыми переменными?
Чтобы разобраться в этом вопросе, нужно вспомнить то, о чем мы говорили ранее, обсуждая термин «статистическая значимость». Установление факта статистической значимости свидетельствуете наличии и некой неслучайной связи между переменными. Факт наличия значимости ничего не говорит о силе этой связи. О масштабах эффекта можно, конечно, догадываться по средним значениям; большая разница между средними, очевидно, отражает более значимый эффект, чем Меньшая разница. Но есть ли более точная мера величины эффекта? j
Ответ состоит в том, что сегодня для расчета величины эффекта существует ряд методов. Основные работы, в которых дается описание этих методов, следующие: Коэн (Cohen, 1977), Розенталь (Rosenthal, 1994b) и Тацоука (Tatsouka, 1993). Здесь я опишу простейшую из процедур, разработанную Коэном (Cohen, 1977). Согласно этому подходу, величина эффекта, или d, определяется как разница между двумя средними, разделенная на стандартное отклонение в сравниваемых
Таким образом, учитывается средняя разница, которая оценивается с точки зрения изменчивости показателей. Чем меньше изменчивость, тем существеннее средняя
разница.
Сейтц (Seitz, 1984) приводит пример. Стандартное отклонение в большинстве тестов IQ равно 15. Средняя разница между группами, равная 12, (каковой она, к примеру, указывается в исследовательских отчетах для только что поступивших в колледж и докторов философии) означала бы величину эффекта 0,8, если бы средняя разница составляла 7 пунктов, величина эффекта была бы равной 0,2. Для интерпретации этих величин можно графически изобразить распределение показателей двух популяций и область их пересечения. На рис. 7.5 изображены кривые, соответствующие трем описанным выше ситуациям, Заметьте, что с возрастанием величины эффекта сокращается область совпадения. Как отмечает Сейтц\ средняя пара кривых особенно информативна. Средняя разница 7 пунктов — или, если рассматривать ситуацию в общем виде, разница, составляющая половину стандартного отклонения, — может показаться не слишком большой. Однако эта разница означает, что 70% одной популяции имеет показатели выше среднего другой популяции.
Меры величины эффекта дают полезную информацию, которую нельзя извлечь непосредственно из значений логических критериев. Однако до сих пор в исследовательских отчетах в области психологии развития — а в действительности и в психологии в целом — редко можно встретить указания на величину эффекта (Cohen, 1994). При обзоре любого журнала по психологии развития можно обнаружить не один десяток F и t, но лишь несколько скромных попыток рассчитать формальные показатели величины разнообразных эффектов.
Мультивариантный дисперсионный анализ
Разница между одновариантными и мультивариантными статистическими процедурами довольно расплывчата; разные специалисты определяют ее по-разному. Однако наиболее распространенным критерием служит количество зависимых переменных. Если анализ проводится при наличии одной зависимой переменной, его можно назвать одновариаптным. Процедура использования r-критерия и дисперсионный анализ — одновариантные статистические процедуры. Если в анализе задействуется более одной зависимой переменной, его можно назвать мульти-вариантным. Существует ряд мультивариантных статистических процедур, к которым относится и мультивариантный дисперсионный анализ, или МДА.
Использование мультивариантных статистических процедур — явление, получившее широкое распространение в психологических исследован иях совсем недавно. Как отмечает Сейтц (Seitz, 1980), статистические основы для этих процедур были выработаны уже давно; проблемы начинались при их практическом использовании. Расчеты мультивариантных статистических показателей зачастую чрезмерно сложны и громоздки, и поэтому до появления компьютеров и соответствующих компьютерных программ использование мультивариантных статистических процедур было крайне затруднено. Наличие компьютера и навыки работы на нем могут оказаться весьма ценными для проведения любой формы статистического анализа.
Рис. 7.5. Разница между популяциями, соответствующая разным значениям величины эффе
Расчеты — не единственная сложность, связанная с мультивариантными статистическими процедурами. В определенном смысле, расчеты — самое простое, поскольку эту работу выполняет компьютер. Настоящая проблема — определить, когда необходим мультивариантный анализ и как интерпретировать его результаты. Для ответа на эти вопросы написано множество книг и прочитано множество теоретических курсов, в том числе весьма подробных и содержательных (см., например: Hair, Anderson, Tatham & Black, 1992; Morrison, 1990; Nesselroade & Cattell, 1988). Здесь я затрону лишь несколько моментов, о которых ведется речь в более сжатой работе (Applebaum & McCall, 1983), ориентированной на специалистов в области психологии развития.