Путь Гегеля к «Науке логики» (Формирование принципов системности и историзма)
Шрифт:
Что это означает? Приглядимся к простейшей арифметической операции, например к пересчету определенных «предметов».
Никак нельзя упускать из виду – на это правильно обращает внимание Гегель, – что имеет место относительность получаемых количественных результатов; во-первых, это отношение к предшествующему для мысли континууму. Если мы подсчитываем любые физические предметы, то континуум в самом широком смысле не что иное как мир материальных вещей. Если отсчет идет от него, то как будто бы простая операция пересчета предметов имеет своей предпосылкой (по сути дела, условием исторического характера) уподобление одних предметов каким-либо прежде сосчитанным предметам и благодаря этому отвлечение от качественных определенностей; во-вторых, предполагается овладение той системой исчисления, на основе которой осуществляется подсчет. Гегель на ряде примеров ведет исследование общих логических процедур, которые необходимы,
«Атом» или любая «элементарная» бытийственная частица, несмотря на свою идеальность, были, так сказать, качественными элементами; теперь же подлежат определению количественные смысловые единицы, элементы континуума, не совпадающие ни с реально выделяемыми в нем образованиями, ни с «качественными» атомами. Нужно вычленить «атомы количества» с их совершенно особыми, некачественными границами. В чем состоят отличительные особенности этих своеобразных количественных атомов?
Во-первых, они должны представлять собой «единицы», т.е. быть в себе непрерывными. Во-вторых, вместе с тем они должны быть дискретными, т.е. в них должно находиться «множество одних» – независимо от того, является ли данное множество в-себе-сущим или «положенным». В-третьих, это «одно» (как своего рода количественный атом) представляет собой и отрицание «многих одних» в качестве простой границы, которая как бы отбрасывает от себя другие определенные количества.
Итак, смысл категории количества, как и смысл поясняющих его более конкретных категорий, более общий, чем его специфическое выражение в математических ипостасях величины, числа, экстенсивных и интенсивных величин. Главное в этих категориальных определениях для гегелевской логики связано с той общей стадией и с теми более конкретными ступеньками развертывания определенностей бытия, которые здесь проходит человеческое познание, в частности и особенности систематическое научно-теоретическое познание.
Применительно к количеству затем происходит возвращение на новой стадии к проблеме границы, к ее осознанию – происходит возвращение на новом уровне к проблеме бесконечности. Одна названа Гегелем «количественной бесконечностью». Модель развертывания определений здесь в принципе такая же, что и на стадии качественной бесконечности. Изменение определенного количества происходит таким образом, что оно «уступает место» другому определенному количеству. Раз определенное количество «положено» как состоящее из данного количества единиц, раз оно множество, значит, оно находится как бы в ряду других множеств. Прибавьте к 25 единицу, получится другое определенное количество, 26. «Определенное количество изменяется и становится другим определенным количеством. Дальнейшее определение этого изменения, а именно что оно продолжается до бесконечности, состоит в том, что определенное количество выступает как противоречащее себе в самом себе. – Определенное количество становится неким иным; но оно продолжает себя, переходя в свое инобытие; иное, следовательно, также есть определенное количество. Но последнее есть иное не только того или другого определенного количества (eines Quantums), но и самого определенного количества как такового (des Quantums), отрицание его как ограниченного, следовательно, есть его неограниченность, бесконечность» 55.
Для Гегеля существенно показать органичность и диалектичность имманентного перехода определений конечного и бесконечного, поскольку они вновь всплывают в сфере количества. Конечность определенного количества – в том, что для определения себя определенное количество должно предполагать выход к иному. Так, смысл определенного числа – в его отличии от другого числа. 25 – число, которое содержит множество именно в 25, а не в 24 и не в 26 единиц. Другими словами, ограничение данного числа имеет смысл в его соотношении с иными определенными же количествами. Но раз предполагается выход за границу этого определенного количества, то точно так же предопределен выход за границы другого определенного количества, а следовательно, сам из себя развертывается момент нескончаемости, бесконечности такого выхода.
Таким образом, определенность числа 25 – в существовании бесконечного множества больших и меньших, чем оно, чисел. Мы уже можем предвидеть, какое название получит у Гегеля такой первоначальный этап «вступления» бесконечности. Гегель по аналогии с дурной бесконечностью или прогрессом в бесконечность сферы качества называет
Гегель, как и в сфере качества, анализирует внутренние противоречия мышления по модели дурной бесконечности, чтобы показать, что оно остановилось в том пункте, который в себе уже содержит необходимость дальнейшего диалектического движения. Когда происходит движение, направленное на отрицание, снятие определенного количества, то обыкновенно обращают внимание только на это первое снятие, на первое отрицание. Говорят, что определенное количество, как бы велико или мало оно ни было, может изменяться до такого предела, что оно исчезает и, значит, можно выйти за предел его, в нечто, стоящее по другую сторону определенного количества. На том и останавливаются, не принимая во внимание, что фактически в мысли об этом первом отрицании содержится внутренне нераскрытой идея второго отрицания, отрицания отрицания. Это существенный момент, который позволит нам понять и смысл движения на категориальной стадии количества, и общую закономерность движения всех вообще бытийственных определений – закон отрицания отрицания, один из важнейших законов диалектики. (Гегель и далее в «Науке логики» станет обращаться к этому закону.) На стадии качества он уже помог Гегелю выбраться из парадоксов дурной бесконечности, скучного прогресса в бесконечность и перейти к «истинной» количественной бесконечности.
Принцип отрицания отрицания учит: столкнувшись с парадоксией конечного – бесконечного – теперь уже на количественной стадии – мы должны восстановить в памяти пройденный крупный этап системного движения, отрицанием, снятием которого явилась та стадия, на которой мы теперь находимся. Мы должны как бы поместить совершаемое нами на этой стадии отрицание таким образом, чтобы обнаружить, какая стадия ему предшествует, в нем снимается (первое отрицание) и какая стадия будет следующей, снова готовя отрицание, снятие (отрицание отрицания). Определенное количество возникло в результате отрицания, снятия качественной границы. Когда переходят на стадию бесконечного прогресса, то второе отрицание в глубоком, действительном смысле еще не имеет места, хотя уже как бы содержится в нем «спрятанным». Надо сделать отрицание отрицания явным и работающим принципом. В данном случае для нас важно, что в законе и в процедуре отрицания отрицания высвечивается именно системная диалектика: согласно Гегелю, должна быть «положена» не только возможность выходить за пределы определенного количества в его «иное» – что как будто бы и есть бесконечность, но нужно, чтобы стала «исчезающей» и эта неистинная, дурная бесконечность. Она тоже должна быть подвергнута отрицанию. Происходит это благодаря возвращению мысли от бесконечности к самому определенному количеству, к новому определению его – через понятие количественного отношения.
Мы не имеем возможности из-за недостатка места рассматривать стадии гегелевского анализа в данном категориальном подразделе, в которых излагается то, что можно было бы назвать гегелевской диалектической философией бесконечно малых. Рассуждение здесь становится специальным философско-математическим анализом. Оно еще ждет своего глубокого истолкования, для чего должны быть соблюдены по крайней мере два условия.
Во-первых, необходимо профессиональное знание математики, ибо Гегель вникает в специальные математические работы Декарта, Ньютона, Лейбница, Лагранжа, Кавальери (и других авторов), что неудивительно, если учесть, что автор «Науки логики» хорошо знал и даже преподавал математику.
Во-вторых, столь же существенны глубокое знание всего категориального контекста «Науки логики», тонкое понимание специфических задач системного логического движения в категориальной сфере количества, стало быть, желание и умение проникнуть в необычную ткань специального гегелевского логического и философского рассуждения. Надо принять в расчет, что у Гегеля понятия «количество», «величина», «число», «бесконечность», «бесконечно большое» и «бесконечно малое» имеют другой смысл, чем в математике, что поэтому переход анализа от математического к логическому срезу чрезвычайно труден и многозначен.