Радиоэлектроника-с компьютером и паяльником
Шрифт:
Можно также воспользоваться соответствующими наборами, или сенсорного переключателя Мастер КИТ NK126, или сенсорным выключателем Мастер КИТ NM4013.
Общий вид дверного звонка показан на рис. 103.
Рис. 103. Общий вид дверного звонка Мастер КИТ NK038
Теперь остается ждать дорогих гостей, а за их маникюр можно уже и не волноваться, так как вместо злосчастной чеховской пуговки ваш звонок предусмотрительно снабжен сенсорной кнопкой.
Особо привередливые меломаны, преуспевшие в электронике, могут далее обратиться к комплекту Мастер
Электронный сторож
Мой дом — моя крепость.
Крепость, безусловно, требует охраны, а в этом нет равных электронике. Но прежде чем рассмотреть электронного стража, познакомимся с одним необычным электронным устройством, на котором он основан.
В далекие предвоенные годы XX в. радиоинженеров, занимавшихся импульсной техникой, связанной с развитием радиолокации, и другими применениями электроники, мучила вечная проблема выделения полезного сигнала на фоне нерегулярных помех. Искомый импульс цели буквально выуживался из множества ложных импульсов. Соответствующая схема была описана в 1938 году О. Г. Шмиттом и получила название «Триггер Шмитта». В те времена основными компонентами устройств служили электровакуумные приборы (радиолампы). Триггер Шмитта (далее ТШ) был выполнен на двойном триоде, как двухкаскадный усилитель, охваченный внутренней положительной обратной связью. Связь была слабой и ее глубина подбиралась так, чтобы не возникала устойчивая автогенерация. В результате получилось устройство, которое при превышении входным напряжением некоторого порогового уровня (напряжения срабатывания) скачком переходило на другой устойчивый уровень (напряжение отпускания). Принятая здесь терминология заимствована из релейной техники. Передаточная характеристика ТШ по напряжению имеет вид петли гистерезиса, аналогичный магнитному гистерезису. Поэтому на условно-графических обозначениях ТШ проставляют характерную родовую метку в виде петли гистерезиса. Со сменой компонентной базы ТШ были выполнены на биполярных транзисторах, а затем и по интегральной технологии, они вошли в серии ТТЛ и КМОП микросхем.
Триггеры Шмитта, являясь несимметричными устройствами, значительно отличаются от большинства своих собратьев: таких распространенных триггеров, как RS, JK, D и Т, которые относятся к группе симметричных. Каскады в них не идентичны по своим параметрам и связям между ними, но главное отличие заключается в том, что выходной сигнал в отсутствие входного — однозначно определен. Поэтому подобные триггеры не обладают памятью и используются как спусковые устройства либо для формирования последовательности прямоугольных импульсов из сигналов произвольной формы, например синусоидальных. Вообще, данный тип триггеров ближе к импульсным, нежели к цифровым устройствам.
Рассмотрим в программе EWB работу классической схемы триггера Шмитта на двух транзисторах (VT1 и VT2) с эмиттерными связями (см. рис. 104, а).
Входной сигнал от функционального генератора FG подается на вход In (база VT1) и канал А осциллоскопа OSC, а выходной снимается с вывода Out (коллектор VT2) и подается на канал В. Для снятия передаточной характеристики триггера выставим режим генерирования сигналов треугольной формы с параметрами, показанными на рис. 104, б. Для того чтобы получить зависимость выходного напряжения от входного на осциллоскопе выберем режим развертки типа В/А (см. рис. 104, в). Поскольку далее для сравнения будет выполняться моделирование ТШ на типовых базовых логических элементах (DD1 и DD2), то схема предусматривает коммутацию приборов ключами [Space] и [С]. В данном же случае ключи [Space] должны находиться в верхнем положении, а ключ [С] — в любом. Включив моделирование получим на экране характерную петлю гистерезиса (см. рис. 104, в).
Рис. 104.
а — схемная модель; б — установки параметров функционального генератора;
в, г — передаточная характеристика и осциллограмма сигналов неинвертирующего ТШ;
д, е — передаточная характеристика и осциллограмма сигналов инвертирующего ТШ
Как уже отмечалось, в ТШ наблюдается характерный гистерезис — отставание величины выходного напряжения от входного. Если частоту следования импульсов уменьшить в десять раз (для этого надо воспользоваться установочными кнопками в окошке Frequency функционального генератора), то можно визуально пронаблюдать, как по мере роста напряжения вычерчивается вся кривая, проходя фигуру против часовой стрелки. Такой своеобразный вид передаточной функции триггера обусловлен его переключением под действием входного напряжения, регулируемого двумя обратными связями: положительной ОС со второго каскада на первый за счет общего резистора R4 и отрицательной ОС по току через этот же резистор, когда открыт транзистор VT1. Если теперь переключить генератор на режим синусоидальных колебаний, а осциллоскоп на развертку сигналов во времени (Y/T), то синусоидальные колебания на входе превращаются в синфазные (по основной гармонике) прямоугольные колебания на выходе триггера (см. рис. 104, г), поскольку в данном случае реализован неинвертирующий триггер Шмитта.
В комплекте базовых логических элементов программы EWB имеется инвертирующий триггер Шмитта (см. компонент DD1 на схеме рис. 104, а). Для снятия передаточной характеристики этого триггера надо перевести переключатель [Space] в нижнее, а ключ [С] — в левое положение. Установив режим развертки в положение В/А, а генератор на треугольную форму колебаний, получим характеристику, показанную на рис. 104, д. В ней обход петли гистерезиса наблюдается по часовой стрелке. Если подать теперь на вход ТШ DD1 синусоидальные колебания, на его выходе (в точке С) получатся противофазные (по основной гармонике) колебания прямоугольной формы (рис. 104, е). Эти колебания можно превратить в синфазные, снимая сигнал с инвертора DD2 (переведя ключ [С] в правое положение и проведя инверсию сигнала с помощью триггера DD2). В этом случае колебания будут аналогичны рис. 104, г.
Триггеры Шмитта позволяют эффективно отфильтровать шумы на пологих фронтах сигналов и являются незаменимыми для стыковки схем с медленно меняющимися сигналами (<1 Гц) с логическими устройствами типа счетчиков и регистров, на их основе можно построить генераторы и другие устройства.
На рис. 105 показано использование ТШ для отстройки от высокочастотной помехи, а на рис. 106 — простейший генератор прямоугольных импульсов.
Рис. 105.Отстройка от ВЧ-помехи на триггере Шмитта:
а — схема; б — осциллограммы сигналов
Рис. 106. Генератор прямоугольных импульсов на триггере Шмитта:
а — схема; б — осциллограммы сигналов
Обычно в состав микросхем входят инвертирующие триггеры Шмитта, например ТТЛ 7414 содержит шесть подобных триггеров, а микросхема КМОП 4093 (аналог К561ТЛ1) состоит из четырех ТШ, на входе каждого из которых стоит двухвходовой элемент И-НЕ.