Рак излечим
Шрифт:
Многие структуры организмов устроены на принципах фракталов (в частности – энергообразующие и информопроводящие). Можно сказать, что деревообразность свойственна фрактальному скейлингу, или гипотезе самоподобия. Организм человека – тоже фрактал, и генетика начинается с этих скрытых пространственных структур, корни которых уходят также в фантомный мир.
Фракталы и симметрия несут на себе не только геометрическую нагрузку, но и пространственное отражение физических законов, физических полей, и им подчиняются химические реакции. Природа кодирует изображения живых и неживых объектов с помощью изощренных, но, в то же время, очень простых по сути способов. Фрактальные методы используются ею для сокращения объема хранимой информации самоподобием, при любом масштабе это так называемые вейвлет-методы, которые для сокращения объема хранимой информации о вейвлетно преобразованной области используют избыточность масштаба. То есть, природа вначале кодирует изображение, затем «обкусывает» лишнее. Кластеризация фракталов – это проявление временных совпадающих физических и пространственных характеристик, нужных объекту в данный промежуток времени (кластеры молекул воды и когерентное состояние молекул белковых структур тому подтверждение). Вот так просто функционируют «простые» методы природы. Многие объекты в природе (например, человеческое тело) состоят из множества фракталов, смешанных друг с другом, причем каждый фрактал имеет свою размерность, отличную от размерности остальных. Например, двухмерная поверхность человеческой сосудистой системы изгибается, ветвится, скручивается и сжимается так, что ее фрактальная размерность равна 3.0. Но если бы она была разделена на отдельные части, фрактальная размерность артерий была бы только 2.7, тогда как бронхиальные пути в легких имели бы фрактальную размерность 1.07. Фрактальная размерность клеточных мембран равна 3, а фрактальная размерность
Интуитивно симметрия в своих простых формах понятна любому человеку, и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и, следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия. Одно из определений понятий симметрии и асимметрии дал В. Готт: «Симметрия – понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть, если хотите, некий элемент гармонии. Асимметрия – понятие противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы». Таким образом, мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. Этот тезис напрямую касается такого понятия, как жизнь. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида. Однако в общем смысле понятие симметрии гораздо шире, и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные уравнения, которые, как мы уже знаем, играют большую роль в самоорганизующихся процессах. Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений. Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, то есть такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А. Пуанкаре: «Пространство – это группа». Логика подсказывает – группа не может существовать одна. Отсюда следует – пространств множество, и иначе быть не может… Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например, правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки. Более глубокое понимание и применение симметрии связано с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем. Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса. И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса. Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического закона – нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и в другой, и тем самым сохраняют симметрию. В 1918 году были доказаны теоремы Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, их описывающих, в природе. Как сказал физик-теоретик Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь – одна из самых красивых и удивительных». Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств, связан с симметрией таких преобразований (это как раз и есть трансляционная симметрия), и означает физическую эквивалентность всех точек пространства, то есть его однородность. Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10– 14 секунд за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле. Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется, исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается, и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, то есть налицо асимметрия. То же можно сказать и о так называемых преобразованиях подобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10– 10 м). И если мы будем уменьшать размеры, например, изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), то есть опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в биологии приводит Б. Свистунов: «Несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать – возникает другое качество».
В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяют одно общее свойство – они являются как бы «внешними» симметриями (огранками) в том смысле, что отражают глубокие свойства структуры
В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности, закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или, по крайней мере, введенные так) величины, подобные электрическому заряду, – барионное число, четность, изоспин, ароматы (странность, очарование, красота и т. д.). Эти, по сути, квантовые числа обусловлены фазовыми преобразованиями волновой функции и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира. Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии.
Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это уже давно хорошо известная нам зеркальная симметрия, которая описывается пространственной инверсией, то есть отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t= – t и наоборот). Надо полагать, обратное течение не времени, а пространств (авт.). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий в будущее или в прошлое для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея – Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз доказывает, что время все-таки «течет» от прошлого к будущему, и наша Вселенная неравновесна и асимметрична. Это, как мы помним, признаки живого… Заметим, однако, что понятие энтропии неоднозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени. Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия.
Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, то есть при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы нуклона. Аналогично, -мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими, и они характеризуются изотопическим спином, или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.
С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но, в случае спонтанного нарушения симметрии и в области низких энергий, они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы. Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально нефизический характер, так как вызвано не какими-либо физическими воздействиями, а геометрическими, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер. Можно добавить, что она влияет и на энергетику физического и биологического объекта. Это ярко проявляется при делении овоидов Кассини. Об этом интересном явлении будет подробно рассказано в следующей главе.
Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, то есть с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным, или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики. Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей. Теория сильных взаимодействий, опирающаяся на представление о цветовых зарядах, получила название квантовой хромодинамики. Эта теория практически завершена для малых расстояний между кварками, но для больших расстояний еще имеются трудности. Тем не менее, применение принципов глобальной и локальной унитарной симметрии способствовало существенному продвижению в области классификации адронов и описания сильных взаимодействий. Вместе с тем на этом пути имеется еще ряд проблем.
Для классификации и описания взаимодействий, наиболее тяжелых и короткоживущих адронов (так называемых резонансов) потребовалось ввести еще три кварка, получивших названия c,b,t. Вместе с лептонами кварки образуют три поколения элементарных частиц, аналогично следует разбить и античастицы. Имеется теоретическое обоснование того, что число поколений должно исчерпываться тремя. Эти повторения поколений представляют собой главную загадку физики элементарных частиц. Возможно, они вновь указывают на составной характер этих частиц и на новую, более глубокую симметрию, уходящую корнями в динамическую симметрию вакуума.
Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. Эти принципы относятся к законам природы так же, как законы природы относятся к явлениям, то есть симметрия «управляет» законами, а законы «управляют» явлениями. Если бы не было, например, инвариантности законов природы относительно смещений в пространстве и времени, то вряд ли наука вообще смогла бы устанавливать эти законы. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Это положение говорит нам о двух вещах: на уровне тканей правой и левой половин тела существуют сильные электромагнитные поля, а ближе к оси симметрии и в клетках – слабые. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.