Рак излечим
Шрифт:
Проблема симметрии – асимметрии это основная проблема естествознания. Эта проблема в биологии (иногда ее формулируют как проблему упорядоченности, регулярности и соразмерности в строении организмов и их развития) изучается на двух уровнях: на макроуровне (субклеточный, органоидный, организменный) и на микроуровне (молекулярный, биополимерный). При этом выделяются два методологических подхода в изучении названной проблемы: выяснение причинно-следственных взаимосвязей между пространственной конфигурацией биополимеров и их функциональными свойствами; выяснение причин необходимости свойственного всему живому миру соотношения L– и D-биомолекул, то есть поиск ответа на вопрос, в чем «целесообразность и полезность» для организма той или иной структуры и функции. То, что в биологических системах встречается лишь один изомер, объяснить несложно. Но почему только L-изомер? Ответ: в спиральных динамичных структурах любого уровня необходим «противовес» для нейтрализации сильного смещения центрального энергетического «вихря» в предполагаемой
Впервые вопрос о биологической целесообразности существующего соотношения стереоизомеров в современном органическом мире был поставлен Пастером: «Почему возникает определенная диссимметрия, а не противоположная, почему только правый сахар… и левые белки». Ставя так проблему, Пастер был глубоко убежден, что изучение этого вопроса – один из важнейших путей к познанию сущности жизни. И все же возникает вопрос: неужели решение столь важных вопросов природа отдает на волю случая? Почему сумел накопиться один из равноценных изомеров? Открытие несохранения четности элементарных частиц показало, что природа все-таки различает правое и левое, и выбор между ними – не вполне дело случая. Это зависит от углов связи между сложными молекулами и просто атомами… Энергия стабилизации определяется углами внутреннего вращения. Для углов, чаще всего встречающихся в белках, она составляет около 10–14 Дж/моль на аминокислотный остаток. Величина мизерная, однако, она способна обеспечить при нормальных условиях около 106 добавочных L-макропомолекул на 1 моль рацемической смеси. Пока неясно, способен ли столь слабый эффект привести к столь широкомасштабным последствиям. Живые организмы содержат большое количество хиральных составных частей, но только L-аминокислоты входят в состав белков и только D-нуклеотиды находятся в нуклеиновых кислотах. Это происходит несмотря на то, что энергия обоих энантиомеров одинакова и их образование имеет равную вероятность в хиральном окружении. Тем не менее, только один из них встречается в природе, и конкретные энантиомеры одинаковы у людей, животных, растений и микроорганизмов. Природа этого явления – одна из величайших загадок, составляющих предмет молекулярной теологии. Людям свойственно приписывать непонятные вещи или явления либо Богу, либо мистике… Но явление диссимметрии носит явно материалистический характер, и раскрытие его тайны дело недалекого будущего. В настоящее время проблема происхождения биологической, молекулярной стереоизометрии обрела четко выраженный междисциплинарный характер.
Симметрия любой физической (и биологической) системы по отношению к операции обращения времени является законом природы, нарушения которого могут происходить из-за НЕКИХ слабых взаимодействий и обнаружить их очень сложно, особенно в живой системе. В живом этот принцип может нарушаться и нарушается повсеместно. В нем нарушается и т. н. принцип Неймана, который гласит: симметрия любого физического свойства не может быть ниже симметрии структуры среды… Законы симметрии влияют на формирование явлений и дополняют законы природы. Живое вещество, идя вразрез с законами природы, на самом деле следует ей. Дело лишь в том, что биологические объекты имеют свою собственную симметрию!
Геометрические принципы симметрии формируются в физических явлениях, а динамические принципы симметрии в законах природы. При наличии центра инверсии в группе симметрии кристалла для него имеет смысл операция зеркальной симметрии, а не пространственной инверсии. Возможным состоянием магнитных кристаллов являются две его конфигурации, связанные операцией обращения времени. У магнитных кристаллов операция изменения знака времени (будущее-прошлое) должна сопровождаться некой операцией пространственной симметрии. Сопровождающей операцией следует считать обращение вектора, т. е. изменение направления «закручивания» кристаллической структуры. Но результатом этого действия является зеркальное отражение магнитного кристалла. Являются ли все состояния магнитных кристаллов, полученные после применения разных операций динамической симметрии, реальными объектами? Отсюда вывод. Любой процесс, происходящий в природе, может происходить, так как он выглядит в зеркале.
На наш взгляд, предназначение жизни в космическом масштабе – расширять области сознания, на планетарном – наращивание массы Земли, замедление скорости ее вращения и изменение ее химической структуры в сторону диссимметрии. Иными словами, оживлять ее. Согласно этой идее, «диссимметрическая совокупность Вселенной» была тем самым главным физическим фактором, который предопределил зарождение биологической изомерии, которая возможна по геометрическим соображениям. То есть типы симметрии, наблюдающиеся у живых организмов, существовали в мире молекул и минералов еще до появления генов. Белки в полимерных цепях – это апериодические кристаллы. В них при фазовых переходах возникают и исчезают разные виды симметрии. На макромасштабе и организменном уровне необходима
1. Направленная асимметрия: какая-то структура развита на одной определенной стороне больше, чем на другой. В качестве примера обычно приводится сердце млекопитающих; большее развитие у одних крабов левой клешни, у других – правой; наличие лево– или правосторонней асимметрии в строении тела камбалообразных или закрученности раковины у брюхоногих моллюсков.
2. Антисимметрия, характеризуемая большим развитием структуры то на одной, то на другой стороне тела, что соответствует отрицательной связи проявления признака на разных сторонах тела. Как пример Ван Вален приводит левшей и правшей в популяциях человека.
3. Флуктуирующая асимметрия, которая определяется как следствие несовершенства онтогенетических процессов. По феноменологии она представляет собой незначительные ненаправленные отклонения от строго билатеральной симметрии. Флуктуирующая асимметрия является следствием несовершенства онтогенетических процессов, неспособности организмов развиваться по точно определенным путям. По феноменологии она представляет собой небольшие ненаправленные отклонения живых организмов от строгой билатеральной симметрии. При этом различия между сторонами не являются строго генетически детерминированными и зависят в основном от внешних условий. Флуктуирующая асимметрия (в отличие от других типов асимметрии) не имеет самостоятельного адаптивного значения, является выражением незначительных ненаправленных нарушений симметрии и не оказывает ощутимого влияния на жизнеспособность организма. Такое положение является вполне естественным, так как значительные различия между сторонами могут иметь место в природе лишь в том случае, если они носят приспособительный характер. Необходимо указать на некоторую условность такого утверждения. Общеизвестно, что любая черта организма в какой-то степени генетически обусловлена. Флуктуирующая асимметрия также генетически обусловлена, так как частота и величина различий между сторонами находятся под контролем генотипа. Но в данном случае она может быть оценена как генетически недетерминированная, поскольку строгая симметрия или некоторая асимметрия признака у конкретной особи определяется случайностью (средой).
Флуктуирующая асимметрия отмечается и тогда, когда в проявлении признака имеет место направленная асимметрия (различие между сторонами и его направление генетически детерминированы). В этих случаях флуктуирующая асимметрия является отклонением от определенной средней асимметрии.
Явлениями флуктуирующей асимметрии охвачены практически все билатеральные структуры у самых разных видов живых организмов, даже те, которые при общем поверхностном анализе могут быть оценены как полностью симметричные.
На основании материала, описанного в многочисленных научных источниках, можно сделать следующие необходимые для практической работы заключения:
• Показатели флуктуирующей асимметрии у организмов, живущих в оптимальных условиях, сходны между собой.
• Разные виды организмов реагируют на ухудшение условий существования повышением величины флуктуирующей асимметрии.
• Величина показателей флуктуирующей асимметрии не зависит от полового и возрастного состава живых организмов, от их популяционных различий.
• У организмов, находящихся в сходных условиях существования, измеряемые параметры флуктуирующей асимметрии характеризуются сходными величинами.
• Различные виды организмов проявляют сходную реакцию (изменение величины флуктуирующей асимметрии) на одинаковые изменения условий среды.
Таким образом, флуктуирующая асимметрия может быть охарактеризована как одно из наиболее обычных и доступных для анализа проявлений случайной изменчивости развития. Высокий показатель асимметрии указывает на неоптимальность среды обитания исследуемых объектов. То есть в данное время мы живем в отрицательном поле… Это можно занести в копилку для поиска причин малигнизации, озлокачествления тканей!