Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Читатель вправе задать вопрос, почему автор так долго и назойливо «досаждает» информацией о математике и геометрии… Только с одной целью: чтобы в умах читателя закрепилось убеждение, что геометрия, математика и физический мир – это совместимые подобия… элементы единого пространства, суть объективной реальности. Как существует много геометрий, так же существует и множество пространств. К загадкам пространства мы будем возвращаться еще много раз. Рассмотрим Диофантовы уравнения 3-й, 4-й степени и т. д. Например, алгебраическое уравнение x2 + y2 = z2, связывающее стороны x, y, z прямоугольного треугольника. Натуральные числа; х, у и z, являющиеся решениями этого уравнения, называются «пифагоровыми тройками». Таковы, например, числа 3, 4, 5. Треугольник с такими сторонами назывался «священным» или «египетским», он был положен древними египтянами в основу пирамиды Хефрена. Математики Древней Греции знали все пифагоровы тройки, которые они получали с помощью следующих формул: х = m2– n2, y = 2mn, z = m2 + n2,

где m и n – целые числа, причем m > n > 0.

К работам Диофанта имеют непосредственное отношение и математические исследования французского математика Пьера Ферма. Считается, что именно с работ Ферма началась новая волна в развитии теории чисел. И одна из его задач – это знаменитое «уравнение Ферма»: xn + yn = zn. Это уравнение Ферма привел на полях принадлежащей ему книги Диофанта, где он сделал следующую приписку: «Невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще никакую степень большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля слишком узки». Другими словами, уравнение при n > 2 не имеет решений в натуральных числах. Однако в 1995 году она была решена и доказана английским математиком А. Уайлсом.

 

Формулировка теоремы очень проста, но почему решение этой элементарной задачи вообще может иметь какое бы то ни было значение для науки? Несмотря на простоту формулировки, для решения теоремы были использованы самые совершенные методы современной математики, которая, находясь на стыке с биологией, помогает решить вопросы биологической самоорганизации. Здесь имеется в виду наука, обладающая огромным богатством накопленных результатов; ее основы так же просты, как и основы жизни. Одно может объяснить суть другого. Хорошо известно, как использовать числа при измерении длины. Например, пусть у нас имеются два отрезка на прямой: один маленький, другой больше. Тогда мы можем провести измерение, прикладывая маленький отрезок вдоль большего, определенное число раз. Казалось бы, очевидно, что если мы приложим маленький отрезок достаточно большое число раз, то сможем достичь границы большого отрезка и затем превзойти ее. На самом деле это утверждение не только не очевидно, но и не может быть доказано. Оно формулируется как независимое утверждение и называется аксиомой измеримости Архимеда. Аксиома Архимеда имеет место в обычной эвклидовой и римановой геометрии, которые используются для описания пространственно-временного континуума в специальной и общей теории относительности.

Однако, в конце ХIX века было обнаружено, что могут существовать неархимедовы геометрии. Они обладают очень непривычными свойствами. Для координатного описания обычной архимедовой (как части эвклидовой) геометрии используются обычные вещественные числа (то есть бесконечные десятичные дроби). Для координатного описания неархимедовой геометрии используются р-адические числа. Для каждого простого числа р определяется континуальное семейство р-адических чисел. Все обычные натуральные и дробные числа являются также и р-адическими, но, кроме того, имеются также и р-адические числа, которые не сводятся к обычным вещественным. Р-адическая геометрия выглядит странно. Например, каждая точка р-адического шара точек, либо один шар содержится в другом (как две капли ртути). Однако эта странная геометрия хорошо приспособлена для описания иерархических структур. Живые существа и биологические системы как раз и являются сложными иерархическими структурами. Причина эта заключается в следующем. Р-адический шар обладает естественной иерархической структурой. Он состоит из конечного числа шаров меньшего радиуса без пустот. Иерархические структуры объясняют связь биологических законов и чисел. Они являются квазисистемой, связывающей натуральные числа и живое, или, точнее, производят переход геометрии в материю.

Если учесть, что все живое триедино и подчинено дуализму, то уравнение Ферма, решенное в условиях, когда n · 2, явится индикатором смещения дуализма от границы ее раздела к золотому сечению троичности, то есть к гармонии. Этот индикатор проявляется в виде спиральности во всех процессах. Гравитация, ее оппонент – жизнь, меж– и внутриатомные связи, межгалактические связи, связи между Вселенными – все в своей основе имеет спиральную форму. Однако наиболее исследованными эти проблемы оказались в науке, изучающей «затвердевшую» форму пространства, то есть в кристаллографии.

Теперь подробнее расскажем о «золотом сечении», которое является загадкой и в то же время «костяком» жизни. Закон этот впервые сформулирован Евклидом. Он дал этому такое определение: отношение целого к большей части должно равняться отношению большей части к меньшей. А по Платону достигается ощущение «наиболее совершенного единого целого». Если разделить отрезок прямой на две неравные части, чтобы его длина (а+в) относилась к большей части (а) так, как эта большая часть к меньшей (в), получим результат, который называют золотым сечением. Это иррациональное число равняется 1.618 или 0.618, его принято обозначать греческой буквой Ф. Части же целого отрезка (а+в), взятого за 1, выражают в относительных величинах: а=0.62, в=0.38 или в процентах 62 % и 38 %. Пентаграмма в древние времена (у пифагорейцев) была символом жизни и здоровья; в средние века – магическим знаком, применявшимся против дьявола. Сейчас это всем известная пятиконечная звезда. Пентаграмма является и фракталом – звезда! Платон вообще говорил, что наша Вселенная представляет собой икосаэдр-додекаэдр!

Разлагая вещество, мы придем к геометрическим фигурам… Не исключено, что мы с вами находимся в каком-то одном из «золотых треугольников» Вселенной. Если учесть всеохватывающий механизм под названием автоморфизм, то форма жизни в этом икосаэдр-додекаэдре выглядит как гормоны роста. Только этим можно объяснить, почему живое растет, причем в одном направлении, отталкиваясь от его «осей».

Истории науки еще предстоит ответить на вопрос, почему именно 80-90-е годы ХХ столетия стали тем историческим периодом, когда особенно проявился интерес к проблемам чисел Фибоначчи и золотого сечения (термин принадлежит Леонардо да Винчи). Именно в этот период ученые различных научных направлений выдвинули гипотезы, связанные с использованием золотой пропорции, и сделали открытия, которые имеют фундаментальное значение для развития как науки в целом, так и отдельных ее отраслей.

Особо следует отметить одно направление «фибоначчиевых» исследований, которое возникло в 70-е годы в советской науке и которому не уделялось должного внимания в Фибоначчи Ассоциации. Как известно, математики-фибоначчисты обращаются к «задаче о размножении кроликов», введенной Фибоначчи в 1202 году в своей знаменитой книге «Liber abaci». Но не менее известной является его «задача о выборе наилучшей системы гирь для взвешивания на рычажных весах», называемая также «задачей о взвешивании», или «задачей Баше-Менделеева» (в русской историко-математической литературе). «Задача о взвешивании» была обобщена украинским ученым А.П.Стаховым.

Наиболее результативным в изучении роли золотого сечения оказался 1984 год. 12 ноября этого года в небольшой статье, опубликованной в авторитетном журнале «Physical Review Letters», было дано экспериментальное доказательство существования металлического сплава с исключительными свойствами (автор открытия – израильский физик Дан Шехтман). Кристаллическая структура этого сплава имела «икосаэдрическую» симметрию, то есть симметрию 5-го порядка, что строго запрещено классической кристаллографией. Сплавы с такими необычными свойствами названы квазикристаллами. Этот факт подтверждает мысль о том, что в живых существах естественным образом уживаются все виды симметрии. Еще Пуанкаре писал, что в город с таинственным названием «Тайны Мироздания» ведет множество дорог: в него можно зайти и через заставу музыки, и через заставу математики, и через какие-либо другие отрасли знаний, если только вникнуть в них достаточно глубоко. Понятно, что одни из них могут оказаться ближе, а другие дальше от центра этого условного города «мировых проблем». Однако существуют такие, где сходятся пути многих наук. Одной из них является застава с удивительным названием «Золотое сечение». Через нее, возможно, лежит самый короткий путь до центра, в котором находится главная «тайна космоса» – Законы Гармонии Мироздания. И что удивительно, именно славянские ученые дальше всего продвинулись в этом направлении. Не потому ли, что загадочная славянская душа ближе к истине, чем более рациональные, прагматичные и сытые нации? Вся космическая пропорциональность у Платона покоится на принципе золотого сечения, или гармонической пропорции. Космология Платона основывается на правильных многогранниках, называемых «телами Платона». Представление о «сквозной» гармонии мироздания неизменно ассоциировалось с ее воплощением в этих пяти правильных многогранниках, выражавших идею повсеместного совершенства мира вследствие совершенства каждой из составляющих его «стихий» (или «начал»). И то, что главная «космическая» фигура – додекаэдр, символизировавшая тело мира и вселенской души, была основана на золотом сечении, придавало ему смысл главной пропорции мироздания. Все эти примеры подтверждают удивительную прозорливость Платона.

Значительна роль тетраэдра, октаэдра и икосаэдра на субатомном уровне: они возникают при рассмотрении электронных пар.

Долгое время считалось, что в неорганической природе почти отсутствуют додекаэдры и икосаэдры, имеющие так называемую пятерную (или пентагональную) ось симметрии, но пентагональная ось симметрии является постоянным спутником жизни. Икосаэдр – геометрическое тело, форму которого принимают вирусы, состоящие из ДНК и белка, то есть икосаэдральная форма и пентагональная симметрия являются фундаментальными в организации живого вещества.

Однако в неорганической природе происходят точно такие же эволюционные процессы. Симметрия неживой природы в процессе этой эволюции превращается в симметрию квазикристаллов и пентагональную, живую симметрию, и фрактальная геометрия ей также не чужда.

В понятие гармонии Пифагор включал и симметрию, и отношения целого и его частей (золотое сечение). С точки зрения всей античной космологии мир представляет собой деления «золотого сечения». Такое представление о гармонии распространялось не только на макрокосм (Вселенную), но и на микрокосм, то есть на человека как «маленькую Вселенную». Используя принцип подобия и перенося строение и свойства Вселенной на человека и на все живое, можно с уверенностью сказать: да, они оказались правы! Некоторые ученые, в частности А.Волохонский, который установил соответствие между общей структурой генетического кода, рядом биномиального разложения 26 и одним из Платоновых тел – икосаэдром. Он также полагает, что икосаэдральная форма и пентамерная симметрия являются фундаментальными в организации живого вещества. Такие форма и симметрия известны и для неорганических тел. С этой точки зрения генетический код представляется Волохонским не как случайный продукт эволюционных блужданий, а как закономерное и необходимое следствие исходных принципов – икосаэдральности и пентамерной симметрии, выбранных живой природой для его осуществления.

Поделиться:
Популярные книги

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Глубина в небе

Виндж Вернор Стефан
1. Кенг Хо
Фантастика:
космическая фантастика
8.44
рейтинг книги
Глубина в небе

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5