Разговор с электрическим мозгом
Шрифт:
Недавно был создан гироскоп принципиально новой конструкции, использующий тончайшие вибрирующие пластинки. Как вы думаете, откуда родилась эта идея? В результате наблюдения за организмом насекомых. Многие из двукрылых насекомых имеют жужжальца. Когда изменяется направление полета, в дрожащем жужжальце возникает дополнительное напряжение, а соответственно и раздражение, которое передается в головной мозг насекомого. Тем самым насекомое корректирует направление полета. Этот принцип и был использован в гироскопе.
Совсем недавно был изобретен прибор, измеряющий ускорение, так необходимый
Во время войны были использованы исключительные способности тюленей слышать звуки. Как известно, тюлени на огромном расстоянии улавливают шум гребных винтов. Американский физик Роберт Вуд попытался использовать эту особенность ушей тюленя. Сегодня чувствительность тюленя уже получила применение в гидрофонах.
Долгое время загадкой была скорость движения дельфина. Он свободно обгоняет любой корабль, и было непонятно, где в таком небольшом объеме теле животного - заключен такой мощный мотор. Оказалось, что дело вовсе не в моторе, а в особой структуре кожи животного. Дельфин скользит в воде с минимальным сопротивлением, так как кожа его не производит никаких турбулентных, вихревых движений. Сейчас за рубежом пытаются проектировать суда, поверхность которых имитирует кожу дельфина.
Непонятно было, как гремучая змея в абсолютной темноте совершенно точно нацеливается на свою жертву. Дело не в том, что ее глаза якобы видят в темноте. Ничего подобного! Оказывается, у гремучей змеи есть исключительно чувствительный инфракрасный локатор. Ом улавливает разность температуры в 0,001 градуса - он-то и направляет смертоносный укус змеи. По этому принципу строятся сейчас тепловые локаторы большой чувствительности.
Ученые установили, что нильская рыба "водяной слон" обладает поразительным локатором, расположенным на спине. Излучая из хвостовой части колебания, нильский "водяной слон" воспринимает их отражение от приближающегося противника небольшим участком кожи на спине. Подобные приборы создаются сегодня. Они используют электромагнитные волны и применяются в мореходстве и в авиации.
Многие конструкторские бюро заняты в настоящее время исследованием полета насекомых. Эти исследования очень важны и интересны, потому что именно насекомые являются самыми крупными рекордсменами скорости. Стоит задуматься, почему винт и реактивный двигатель - несущая сила современного самолета - в то же время мешают увеличению скорости. Полет насекомых более экономен и обеспечивает большую скорость.
Девайте сопоставим скорость полета насекомых, птиц и самолета.
Скорость полета шмеля-18 километров в час, слепня - до 55 километров в час, а вот скворец пролетает в час более 70 километров. Стрижи могут развить скорость до 100 километров в час. У самолетов как будто явное преимущество. Но это далеко не так.
Распределим призовые места по другому принципу, учитывая длину тела. Тогда мы увидим, что слепень за час покрывает расстояние, равное 30000 своей длины, шмель-10000, стриж будет уже на третьем месте - 8000. На последнем месте окажется
Где же источники этой поразительной скорости? Обыкновенная муха, которая весит 73 миллиграмма, имеет крылья площадью в 56 квадратных миллиметров. Таким образом, на один килограмм веса мухи приходится чуть больше половины квадратного метра площади крыльев. У комара же на один килограмм веса приходится площадь крыльев в 10 квадратных метров.
Все эти цифры очень важны для тех, кто занимается сегодня изучением новых средств полета в технике.
Полет - это общий принцип. Но любая "деталь" живого организма может представлять интерес для конструктора.
Какова связь между глазом пчелы и полетом спутников в межзвездном пространстве?
А ведь эта связь есть. Глаз пчелы имеет фасеточную конструкцию - он состоит из тысячи воспринимающих ячеек. Но пчела видит солнце только несколькими из этих элементов. Обладая "биологическими часами", как бы отсчитывающими время, пчела потрясающе ориентируется в пространстве по солнцу. Но ведь этот же принцип применим для ориентации спутников.
В одном из научных институтов Америки был создан аппарат, копирующий действия глаза лягушки.
Дело в том, что лягушка умеет абстрагироваться от неподвижного предмета, сосредоточив все свое внимание только на предмете движущемся. Это помогает ей охотиться за
насекомыми. Искусственный глаз лягушки занимает сегодня очень много места. Это 7 рам, размером 1х1 метр, состоящие из фотоэлементов искусственных нейронов и неоновых ламп. Число фотоэлементов огромно - свыше 1000 на каждой раме. Комбинация фотоэлементов устроена таким образом, что они взаимно погашают любое неподвижное изображение, попадающее в сферу обзора "лягушиного глаза". Но как только электрическое равновесие системы будет нарушено движущимся предметом, он будет тут же обнаружен.
Такой прибор представляется весьма интересным и полезным. Ведь ему ничего не стоит обнаружить самолет, отличив его от неподвижных сигналов отражения гор, мачт электропередачи, заводских труб и т. п. Подвижный предмет мгновенно привлечет внимание и будет зафиксирован аппаратом. Это важно для управления воздушным движением, для радиолокации и других целей.
Мы уже говорили о том, что создается модель живых нейронов. Существует уже около двух десятков таких моделей. Они отличаются друг от друга не только схемами, но и принципами действия. Существуют модели нейронов электронные, полупроводниковые, химические.
Хочется верить в то, что с помощью этих моделей мы подойдем к возможности создавать "умные" машины.
Но сумеем ли мы добиться когда-нибудь того замечательного качества, каким обладает живой мозг,- умения предвидеть будущую ситуацию, чтобы успеть подготовиться к ней?
Ведь ни один поступок, ни одно действие не совершаем мы без того, чтобы не предвидеть в довольно ясной форме тех результатов, которые мы получим. Не будь этого, мы бы не могли существовать, вся наша жизнь стала бы неуправляемой, бессистемной и хаотичной.