Революция в физике
Шрифт:
Естественно характеризовать материальную точку величиной коэффициента инерции – ее массой. При этом основной закон динамики материальной точки можно сформулировать следующим образом: ускорение, сообщаемое некоторой материальной точке, равно в каждый момент времени отношению силы, действующей на эту точку, к величине ее массы. Заметим, что в соответствии с методом, предполагающим, что изложение кинематики предшествует изложению динамики, масса, являющаяся в динамике характеристикой материальной точки, вводится a posteriori, тогда как существование определенных положения, траектории, скорости и ускорения точки допускается a priori.
Уравнения классической динамики материальной точки утверждают таким образом, что произведение массы материальной точки на какую-либо из компонент ее ускорения равно соответствующей компоненте силы, действующей на эту материальную точку. Если предположить, что сила есть известная функция координат и времени,
Хорошо известная из математического анализа теорема утверждает, что решение этой системы уравнений однозначно определяется заданием координат и их первых производных по времени в какой-либо начальный момент времени. Иначе говоря, если известно положение материальной точки и ее скорость в некоторый момент времени, то можно точно определить характер ее движения во все последующие моменты времени.
Этот результат показывает, что классическая динамика материальной точки находится в полном соответствии с принципом физического детерминизма, принципом, согласно которому будущее состояние материального мира может быть полностью предсказано, если известны параметры, определяющие его состояние в какой-либо предшествующий момент времени.
Интересно отметить еще один факт. Поскольку предполагается, что материальная точка имеет бесконечно малые размеры, то ее траекторией будет линия, которая занимает в трехмерном пространстве лишь одномерный континуум. Материальная точка в каждой точке своей траектории находит определенное значение силы, которое и задает ее движение в последующий бесконечно малый промежуток времени. При этом, казалось бы, характер движения определяется лишь значением поля сил вдоль траектории и совершенно не зависит от его значений вне этой траектории. В действительности, однако, это не совсем так, и характер движения зависит также от поля сил в непосредственной близости от траектории. Последнее обстоятельство связано с тем, что, поскольку во всех физических задачах поле сил, как правило, меняется в пространстве непрерывно, значение силы в какой-либо точке траектории зависит, вообще говоря, от ее значений в области, непосредственно примыкающей к траектории. Особенно ясно это видно в часто встречающемся случае, когда сила в каждой точке пространства равна градиенту некоторой функции координат. Действительно, определение градиента предполагает, что потенциал известен не только в точке приложения силы, но и в некоторой бесконечно малой окрестности этой точки и, следовательно, сила в каждой точке траектории оказывается зависящей от значений потенциала в области, расположенной в непосредственной близости от траектории. Принцип наименьшего действия приводит к тем же выводам, поскольку он определяет действительную траекторию материальной точки, т е. траекторию, которую в действительности описывает материальная точка, двигаясь согласно законам динамики, сравнением ее с другими, бесконечно близкими траекториями. Это также означает, что характер движения материальной точки зависит от значений силы в области, расположенной бесконечно близко от ее траектории.
Однако в рамках классической механики топологические неоднородности пространства, расположенные на конечных расстояниях от траектории материальной точки, разумеется, никоим образом не могут влиять на ее движение. Поместим, например, поперек траектории материальной точки экран с отверстием. Если траектория пересекает экран вблизи центра отверстия, то искажения топологии пространства, вызванные наличием экрана, совершенно не повлияют на ее вид. Напротив, если траектория проходит бесконечно близко от края отверстия, то она будет возмущена, и тогда говорят, что частица задела край экрана. Однако с точки зрения классической механики, совершенно невозможно понять, почему движение материальной точки, проходящей сквозь отверстие в экране, зависит от того, имеются ли в экране дополнительные отверстия, расположенные на конечном расстоянии от первого. Значение этих замечаний для объяснения опытов Юнга с отверстиями в экране с корпускулярной точки зрения скоро станет понятно; можно также почувствовать, что нового должна внести волновая механика в этот вопрос.
Уравнения классической механики материальной точки позволяют ввести две динамические величины, характеризующие движение материальной точки. Первая из них – векторная величина, количество движения, или импульс, который определяется в классической механике как произведение массы материальной точки на ее скорость. Важность этой величины для физики следует из тех же уравнений движения, поскольку их можно сформулировать следующим образом: производная по времени от вектора количества движения равна силе, действующей на материальную точку. Хотя, как легко видеть, в классической механике эта динамическая величина является производной от кинематической
Так же как остается постоянной энергия, если производная потенциала по времени тождественно равна нулю, так и компонента количества движения сохраняет постоянное значение, если производная потенциала по соответствующей координате тождественно равна нулю. Это указывает на некоторое сходство между энергией и компонентами импульса. Энергия соответствует временной координате, тогда как компоненты импульса – пространственным координатам. Сходство проявляется еще более явно в теории относительности, в которой энергия и три компоненты импульса рассматриваются как компоненты некоторого четырехмерного пространственно-временного вектора – вектора четырехмерного импульса.
В механику материальной точки входят также и несколько других величин, имеющих важное значение. Например, компоненты момента количества движения материальной точки относительно некоторой заданной точки. Они также выводятся из кинематических понятий положения и скорости, к которым добавляется динамическое понятие массы. Эти компоненты, как известно, будут первыми интегралами движения в случае центрального поля сил; важность этого случая в небесной механике общеизвестна.
Итак, в классической теории динамические величины образуются из кинематических величин скорости и координаты и собственно динамических величин массы» и потенциала.
3. Динамика системы материальных точек
В динамике материальной точки поле сил предполагается заданным в каждой точке для каждого момента времени. Но в классической механике силовое поле, действующее на какую-либо материальную точку, само создается другими материальными точками. Таким образом, вполне естественно рассмотреть совокупность взаимодействующих между собой материальных точек и определить характер движения такого ансамбля.
На первый взгляд подобная задача может показаться очень сложной, поскольку каждая материальная точка, входящая в эту систему, перемещается в результате воздействия на нее других материальных точек, что в свою очередь приводит к изменению силы, действующей на данную материальную точку со стороны остальных.
Тем не менее, с математической точки зрения задача формулируется по-прежнему просто: в каждый момент времени произведение массы какой-либо материальной точки на ее ускорение равно действующей на нее силе, которая, разумеется, зависит от положения всех остальных материальных точек системы. Таким образом, для ансамбля, состоящего из N материальных точек, мы получаем систему из 3N дифференциальных уравнений второго порядка по времени для 3N координат всех N материальных точек. Как следует из математического анализа, решение этой системы уравнений полностью определяется заданием положений и скоростей всех материальных точек системы в начальный момент времени. Так обобщается на случай системы материальных точек принцип механического детерминизма, установленный ранее для случая одиночной материальной точки.
Изучение движения системы материальных точек очень упрощается, если ввести понятие центра инерции системы, который, как известно, совпадает с центром тяжести всех материальных точек системы. Оказывается, что если на систему не действуют никакие внешние силы, то ее центр инерции движется прямолинейно и равномерно. Этот результат следует из одного общего свойства сил, вводимых в механике, свойства, которое выражается принципом равенства действия и противодействия. Согласно этому принципу, сила, действующая на материальную точку A со стороны материальной точки B, равна по величине и противоположна по направлению силе, с которой точка A действует на точку B.