Русский преферанс
Шрифт:
В генеральной совокупности, состоящей из n карт, имеются n1 красных и n-n1 чёрных карт. Из этой совокупности берётся выборка в r карт (без учёта порядка карт в выборке). Нужно найти вероятность qk того, что такая выборка содержит ровно k красных карт (k<=n1;k<=r). Таким образом, выборка должна содержать k красных и r-k
Здесь —
Отметим, что
Любой способ выбора k красных карт может комбинироваться с любым способом выбора r-k чёрных карт. Вероятность qk, что такая выборка содержит ровно k красных карт, определяется следующей зависимостью:
105
Их часто называют числом сочетаний из a по b и обозначают
Если выборка должна содержать только красные карты (r=k), то зависимость (1) упрощается:
Определённая таким образом система вероятностей qk называется гипергеометрическим распределением и кажется достаточно сложной. Однако приведённые ниже примеры покажут, что расчёты вероятностей реальных раскладов достаточно просты, а их результаты обычно могут быть сведены в таблицы.
Например, вы купили прикуп, сделали снос, на руках шесть старших карт в пике и AKQx в трефе (трефа не сносилась). Какова вероятность того, что у одного из партнёров на руках четвёртый валет треф?
n1=k=4; n=20; r=10
Таким образом, четвёртая трефа встретится в 87 случаях из 1000 (вероятность расклада удваивается, поскольку вам всё равно, у кого из партнёров будет четвёртый валет треф).
Или, например, вы хотите объявить мизер. Для того чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Какова вероятность, что вы купите нужную карту и
Второй член в (4) определяет вероятность покупки двух из семи заданных карт.
Система вероятностей qk легко обобщается на случай, когда исходная совокупность из n карт содержит более двух классов элементов.
Вероятность того, что выборка объёма r содержит k1 элементов первого класса, k2 элементов второго класса и r-k1– k2 элементов третьего класса, определяется аналогично (1):
где n1 и n2 — количество элементов первого и второго класса в генеральной совокупности; n-n1– n2 — число элементов третьего класса. Элементами класса могут быть карты какой-то масти, определённый набор карт и так далее.
Точно так же можно определять вероятности для выборки, содержащей четыре класса элементов. Рассмотрим пример, в котором элементами каждого класса являются карты одной из четырёх мастей.
У вас на руках AKxx, Axx, Axx, а в сносе две фоски четвёртой масти. Первая масть — козырная. Какова вероятность того, что вы проиграете контракт на шесть взяток, если партнёры вистуют в светлую?
На руках у вистующих четыре козыря, по пять карт в других ваших мастях и шесть карт в четвёртой масти. Для подсада контракта у кого-то из партнёров должен найтись один из губительных для вас раскладов:
3:3:3:1, 3:4:3:0, 3:3:4:0, 4:3:3:0, 4:3:2:1, 4:2:3:1, 4:4:2:0, 4:2:4:0, 4:2:2:2.
С раскладом 4:2:2:2 вистующий посадит контракт, если начнёт разыгрывать козырь сам. Строго говоря, у него может не найтись нужных приёмов в побочных мастях, поэтому шансы на выигрыш у вас есть. Но они очень незначительны, и мы их не учитываем.
В одном случае из девяти рассмотренных карта будет зеркальной (4:3:3:0), и вы возьмёте только четыре взятки. Вероятность этого события равна 0,00054x2. Вероятность каждого расклада нужно удвоить, так как вам всё равно, у кого из партнёров встретился данный расклад.
Выше уже отмечалось, что при вероятностном подходе оптимизируется не выигрыш отдельного контракта, а математическое ожидание выигрыша при регулярной игре. Приведённые зависимости позволяют определить при игре в преферанс вероятности повторения раскладов как случайных событий и рассчитать математическое ожидание выигрыша (проигрыша) в конкретных ситуациях.
Рассмотрим методику определения математического ожидания выигрыша и поиска оптимальных решений на некоторых примерах, приведённых выше.
Вы играете «сочинку» вчетвером, объявили мизер. Чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Вероятность выигрыша мизера qk=0,55 (4). При сыгранном мизере вы запишете в пулю 100. Фактический выигрыш составляет 75 вистов (при расчётах математического ожидания выигрыша предполагается, что фактический выигрыш составляет 3/4 от записи в пулю).
Если мизер не сыгран (вероятность этого события 0,45), вы запишете за одну взятку 100 на гору, проигрыш составит также 75 вистов. Математическое ожидание выигрыша: