Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В генеральной совокупности, состоящей из n карт, имеются n1 красных и n-n1 чёрных карт. Из этой совокупности берётся выборка в r карт (без учёта порядка карт в выборке). Нужно найти вероятность qk того, что такая выборка содержит ровно k красных карт (k<=n1;k<=r). Таким образом, выборка должна содержать k красных и r-k

чёрных карт. Красные карты (их всего n1) могут быть выбраны 
различными способами, чёрные карты — 
 способами.

Здесь —

так называемые биномиальные коэффициенты: [105]
, где 
 — число возможных перестановок из а элементов.

Отметим, что 

— выборка, содержащая все а красных карт, может быть создана единственным способом.

Любой способ выбора k красных карт может комбинироваться с любым способом выбора r-k чёрных карт. Вероятность qk, что такая выборка содержит ровно k красных карт, определяется следующей зависимостью:

. (1)

105

Их часто называют числом сочетаний из a по b и обозначают .

Если выборка должна содержать только красные карты (r=k), то зависимость (1) упрощается:

. (2)

Определённая таким образом система вероятностей qk называется гипергеометрическим распределением и кажется достаточно сложной. Однако приведённые ниже примеры покажут, что расчёты вероятностей реальных раскладов достаточно просты, а их результаты обычно могут быть сведены в таблицы.

Например, вы купили прикуп, сделали снос, на руках шесть старших карт в пике и AKQx в трефе (трефа не сносилась). Какова вероятность того, что у одного из партнёров на руках четвёртый валет треф?

n1=k=4; n=20; r=10

. (3)

Таким образом, четвёртая трефа встретится в 87 случаях из 1000 (вероятность расклада удваивается, поскольку вам всё равно, у кого из партнёров будет четвёртый валет треф).

Или, например, вы хотите объявить мизер. Для того чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Какова вероятность, что вы купите нужную карту и

сыграете «чистый» мизер?

. (4)

Второй член в (4) определяет вероятность покупки двух из семи заданных карт.

Система вероятностей qk легко обобщается на случай, когда исходная совокупность из n карт содержит более двух классов элементов.

Вероятность того, что выборка объёма r содержит k1 элементов первого класса, k2 элементов второго класса и r-k1– k2 элементов третьего класса, определяется аналогично (1):

. (5)

где n1 и n2 — количество элементов первого и второго класса в генеральной совокупности; n-n1– n2 — число элементов третьего класса. Элементами класса могут быть карты какой-то масти, определённый набор карт и так далее.

Точно так же можно определять вероятности для выборки, содержащей четыре класса элементов. Рассмотрим пример, в котором элементами каждого класса являются карты одной из четырёх мастей.

У вас на руках AKxx, Axx, Axx, а в сносе две фоски четвёртой масти. Первая масть — козырная. Какова вероятность того, что вы проиграете контракт на шесть взяток, если партнёры вистуют в светлую?

На руках у вистующих четыре козыря, по пять карт в других ваших мастях и шесть карт в четвёртой масти. Для подсада контракта у кого-то из партнёров должен найтись один из губительных для вас раскладов:

3:3:3:1, 3:4:3:0, 3:3:4:0, 4:3:3:0, 4:3:2:1, 4:2:3:1, 4:4:2:0, 4:2:4:0, 4:2:2:2.

С раскладом 4:2:2:2 вистующий посадит контракт, если начнёт разыгрывать козырь сам. Строго говоря, у него может не найтись нужных приёмов в побочных мастях, поэтому шансы на выигрыш у вас есть. Но они очень незначительны, и мы их не учитываем.

. (6)

В одном случае из девяти рассмотренных карта будет зеркальной (4:3:3:0), и вы возьмёте только четыре взятки. Вероятность этого события равна 0,00054x2. Вероятность каждого расклада нужно удвоить, так как вам всё равно, у кого из партнёров встретился данный расклад.

Выше уже отмечалось, что при вероятностном подходе оптимизируется не выигрыш отдельного контракта, а математическое ожидание выигрыша при регулярной игре. Приведённые зависимости позволяют определить при игре в преферанс вероятности повторения раскладов как случайных событий и рассчитать математическое ожидание выигрыша (проигрыша) в конкретных ситуациях.

Рассмотрим методику определения математического ожидания выигрыша и поиска оптимальных решений на некоторых примерах, приведённых выше.

Вы играете «сочинку» вчетвером, объявили мизер. Чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Вероятность выигрыша мизера qk=0,55 (4). При сыгранном мизере вы запишете в пулю 100. Фактический выигрыш составляет 75 вистов (при расчётах математического ожидания выигрыша предполагается, что фактический выигрыш составляет 3/4 от записи в пулю).

Если мизер не сыгран (вероятность этого события 0,45), вы запишете за одну взятку 100 на гору, проигрыш составит также 75 вистов. Математическое ожидание выигрыша:

Поделиться:
Популярные книги

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Разбитная разведёнка

Балер Таня
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Разбитная разведёнка

Вспомнить всё (сборник)

Дик Филип Киндред
Фантастика:
научная фантастика
6.00
рейтинг книги
Вспомнить всё (сборник)

Эволюционер из трущоб. Том 2

Панарин Антон
2. Эволюционер из трущоб
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Эволюционер из трущоб. Том 2

Полковник Гуров. Компиляция (сборник)

Макеев Алексей Викторович
Полковник Гуров
Детективы:
криминальные детективы
шпионские детективы
полицейские детективы
боевики
крутой детектив
5.00
рейтинг книги
Полковник Гуров. Компиляция (сборник)

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Звездная Кровь. Изгой II

Елисеев Алексей Станиславович
2. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
технофэнтези
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой II

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский