Шипение снарядов
Шрифт:
…Одним из парадоксов электромагнитного оружия является то, что создавать чересчур мощный и одновременно малоразмерный источник РЧЭМИ бессмысленно — может произойти пробой [93] (рис. 4.57) среды, где распространяется излучение.
93
Кстати,
Пробой происходит в том случае, когда свободные электроны успевают за время между столкновениями с нейтральными молекулами получить от электрической компоненты РЧЭМИ энергию, достаточную для ионизации атома такой молекулы. Далее происходит процесс лавинообразного размножения заряженных частиц (и электронов, и ионов), то есть образование плазмы.
При нормальных условиях свободных электронов в воздухе практически нет: они «прилипают» к молекулам кислорода, углекислого газа и паров воды, конфигурация электронных оболочек которых такова, что присоединение электрона энергетически выгодно. Однако энергия связи электрона в отрицательном ионе мала (десятые доли электронвольта) и в сильном электрическом поле отрицательные ионы «отдают» в столкновениях свои электроны.
И на образование электронов, и на ионизацию, и на разогрев плазмы расходуется энергия, а ей просто неоткуда взяться, иначе как быть «отобранной» у поля. Поэтому-то «избыточная», превышающая пробивную, напряженность электрической составляющей РЧЭМИ (на правом рисунке выделена красным цветом) быстро убывает. Когда, наконец, напряженность становится меньше пробивной, она убывает куда как медленнее — обратно пропорционально расстоянию от источника.
В приведенном примере самая мощная амплитуда примерно втрое превышает первую из тех, что не вызывают разряд. Мощность РЧЭМИ пропорциональна квадрату напряженности, из чего следует, что около 90 % энергии импульса было израсходовано на бесполезный «фейерверк». Иными словами, за исключением зоны разряда, такую же плотность мощности на равных расстояниях может создать на порядок менее мощный источник РЧЭМИ.
Если бы в поле снимка оказалось изображение какого-нибудь предмета с известными размерами, то оказалось бы возможным получение важной информации: по расстояниям между плазмоидами — о длине волны генерируемого РЧЭМИ, а по расстоянию, на котором разряды затухают — о его мощности. Для пробоя, вызванного не моночастотным, а сверхширокополосным РЧЭМИ, разделения плазмоидов не наблюдается
Пробивная напряженность тем выше, чем короче импульс РЧЭМИ (рис. 4.58), так что, применяя источник, формирующий короткие импульсы, можно получить и выигрыш в эффективности действия по цели и сделать устройство более энергоемким. Но в любом случае явление пробоя связывает размеры источника и его мощность: чересчур мощный и малогабаритный источник приходится снабжать длинным рупором или ставить дополнительный слой изолятора, искусственно увеличивая его размер, чтобы не допустить бесполезного нагрева плазмы излучением!
… Поразить цель — танк, боевой блок — можно, либо точно попав в нее подкалиберным снарядом, кинетическим перехватчиком, либо не попав, но доставив достаточно близко боеприпас, рассеивающий свою энергию во все стороны: нейтронную боеголовку, мощную авиабомбу.
Если в цель должно попасть излучение направленного источника, то его необходимо наводить. Кроме того, пучок формируемого им
РЧЭМИ надо сузить — чтобы добиться максимальной дальности поражения. Сужение пучка неизбежно приведет к тому, что на выходе источника плотность энергии РЧЭМИ приблизится к пробивному
Сделаем обратный ход: расширим до предела диаграмму направленности. Абсолютные значения дальности поражения при этом уменьшатся, но исчезнут необходимости в искусственном увеличении габаритов, в наведении источника на цель.
Пробой — фундаментальное ограничение, с которым ничего нельзя поделать, и, как угодно изменяя конструкцию источника РЧЭМИ, невозможно устранить связь не только его размеров с мощностью, но тех дальностей поражения электроники, которые можно ожидать при боевом применении (рис. 4.59). В чистом, сухом воздухе на уровне моря цель средней стойкости поражается на дальности, не превышающей тысячу размеров источника (R<1000r) [94] . даже если плотность энергии РЧЭМИ на его поверхности максимально возможная — пробивная.
94
Автор счел необходимым выделить оценку жирным курсивом, но решил дать еще и дополнительное разъяснение. Приходилось сталкиваться с ее использованием в титанической борьбе за финансирование: в ход шли подтасовки (утверждалось, например, что РЛС выводится из строя импульсом РЧЭМИ энергией в наноджоули). Ощущая острое сочувствие к страждущим, автор все же не счел возможным взять на себя долю ответственности за вымогаемое решение. Однажды создатели направленных излучателей радостно загомонили, что их устройство «вывело из строя» нечто «на значительно больших расстояниях». Оказалось, что это — правда, но, как водится, — не вся: в качестве мишени при проведении опытов выбирались объекты с приборами зарядовой связи, стойкость которых к РЧЭМИ более чем на два порядка меньше средних для электроники значений. Оценка в «тысячу характерных размеров» — предварительная, применяемая в тех случаях, когда стойкость цели по отношению к РЧЭМИ заранее не известна. Если же такие данные имеются, то следует использовать оценку, приведенную в подписи к рис. 4.59.
Для ЭМБП калибра 130 мм оценка в «тысячу радиусов» дает максимальный радиус поражения 65 м, примерно равновероятного по направлениям. Этот радиус на порядок превышает тот, в пределах которого разрывом 130-мм осколочно-фугасного снаряда уничтожается крылатая ракета. А вот дня направленных источников РЧЭМИ оценка в «тысячу длин» полна трагизма: они проиграют в дальности поражения равным им по габаритам огневым средствам, например — той же автоматической пушке.
Обычно эти пояснения быстро надоедали высокопоставленным собеседникам и следовала реплика: «Ну и что?». Законы жанра требуют заинтересовать чем-то близким, дорогим и понятным.
Из, казалось бы, отвлеченных физических рассуждений, вырисовывался облик того, что предлагалось заказчикам.
• ЭМБП следует применять в залпе, потому что облучение цели с разных направлений делает более вероятным совпадение лепестков излучения и приема на частотах, к которым цель наиболее чувствительна, да и воздействие на полупроводниковый элемент последовательности токовых импульсов вызывает его деградацию при меньшей интегральной энергии, чем это имеет место для единичного импульса.