Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Квантовый выход внутреннего фотоэффекта при этом рассчитывался по формуле

?=I? 31/ (1-r) qN0?,

где q — заряд электрона, поскольку I? 31 выражен в энергетических единицах.

Эти измерения были выполнены на кристаллах с р-n– переходом, в которых фотоэлектрический эффект обнаруживается сразу — по генерируемому в цепи току без приложения внешнего напряжения. Обеспечивались условия, когда эффективность собирания носителей ?=l (или по крайней мере сохраняет постоянное значение во всем использованном диапазоне спектра), чтобы при расчете

можно было пользоваться приведенной выше формулой. В связи с этим для экспериментов выбирались кристаллы с большой диффузионной длиной неосновных носителей заряда в верхнем легированном слое L?. Глубина залегания p-n– перехода lлбыла небольшой, и соблюдалось условие L?>l?. К тому же эксперименты проводились только в видимой и ультрафиолетовой областях спектра.

В результате анализа полученных экспериментальных данных был сделан вывод, что в широком диапазоне энергии падающих квантов (Eg < hv < 2Eg) квантовый выход ?, обусловленный фотоионизацией, в кремнии равен единице. При большой энергии квантов падающего излучения (hv>2Eg, т. е. в ультрафиолетовой области спектра) ? начинал резко возрастать, что, вероятно, объясняется процессом ударной ионизации — возникновением вторичных пар электрон — дырка за счет избыточной кинетической энергии первичных пар.

Таким образом, можно считать, что первый акт взаимодействия оптического излучения с полупроводником (внутри кристалла) происходит практически без потерь с эффективностью, близкой к 100 %, в широкой области спектра,

Однако в большинстве полупроводников, использующихся для создания солнечных элементов, несмотря на равный единице квантовый выход ионизации (а также при ?>l в ультрафиолетовой области) с увеличением энергии квантов возрастают потери в расчете на энергию одного кванта в силу конечного значения ширины запрещенной зоны обычного полупроводникового материала.

Переход к солнечным элементам более сложной структуры, которые будут описаны в гл. 4 настоящей книги, например на основе каскадных систем, или к элементам с контролируемым градиентом ширины запрещенной зоны по глубине (большой у поверхности полупроводника и уменьшающейся в глубь материала, что отвечает спектральной зависимости коэффициента поглощения) позволяет полностью избавиться от таких оптических и энергетических потерь и увеличить КПД преобразования солнечного излучения в электрическую энергию.

Оптические излучения различных длин волн проникают на разную глубину (поскольку эта величина существенно зависит от энергии квантов) и создают свое пространственное распределение рожденных светом пар электрон — дырка (см. рис. 2.1).

Дальнейшая судьба рожденных пар зависит от их диффузионной длины в данном полупроводниковом материале. Если она достаточно велика, то созданные светом избыточные неосновные носители заряда успеют (даже без участия тянущего электрического поля) только за счет процесса диффузии дойти до области p-n– перехода и будут разделены его полем.

Решающую роль в эффективности этой стадии преобразования оптического излучения внутри полупроводника играет соотношение между диффузионной длиной L и расстоянием от p-n– перехода l, на котором создаются светом пары электрон — дырка.

Рассмотрим два крайних случая расположения p-n– перехода в полупроводниковом кристалле по отношению к направлению падения оптического излучения: перпендикулярно (рис. 2.6, а) и параллельно (рис. 2.6,

б). Условимся, что в первом случае свет проникает на всю глубину кристалла и I равно толщине полупроводниковой пластины, а во втором — освещается вся поверхность пластинки шириной d.

Pис. 2.6. Схема расположения p-n-перехода в полупроводниковом кристалле при перпендикулярном (а) и параллельном (б) плоскости p-n-перехода падении оптического излучения

Ln, Lp — диффузионная длина неосновных носителей заряда в р- и n-областях соответственно; l — глубина проникновения света в полупроводник; заштрихованы контактные металлические слои к р- и n-областям полупроводника

Pис. 2.7. Распределение числа созданных оптическим излучением пар электрон — дырка по глубине кремния при падении излучения разной длины волны перпендикулярно плоскости p-n– перехода

1 — ? = 0,619 мкм, ? = 2000 см– 1; 2 — ? = 0,81 мкм; ? = 700 см~1; 3 — ? = о,92 мкм; а = 90 см – 1

Очевидно, что эффективность собирания для перпендикулярного и параллельного расположения p-n– перехода определяется соответственно соотношениями

?=(Ln+Lp)/l и ?=(Ln+Lp)/d.

На первый взгляд параллельное расположение кажется более предпочтительным, ибо для полного собирания и разделения носителей наиболее существенным является распределение пар носителей в направлении, перпендикулярном p-nпереходу: равномерная генерация носителей по глубине кристалла создает благоприятные условия для их диффузии к p-n– переходу и последующего пространственного разделения.

Разработанные на основе такого расположения p-n-перехода по отношению к свету многопереходные матричные солнечные элементы, состоящие из большого числа микроэлементов, плоскости которых параллельны по отношению к падающему солнечному излучению (или расположены под небольшим углом к нему), действительно обладают высокой эффективностью собирания носителей в длинноволновой области спектра и позволяют получить значительную фото-ЭДС с единицы освещаемой поверхности.

Однако расчетным и экспериментальным путем было установлено, что из-за весьма небольших размеров микроэлементов рекомбинация созданных светом пар на освещаемой поверхности играет при параллельном расположении p-n– перехода относительно падающего излучения значительно большую роль, чем при перпендикулярном. Вследствие этого для увеличения эффективности собирания в коротковолновой области спектра необходимо создать на обращенной к свету поверхности дополнительный слой, легированный примесью противоположного типа проводимости, т. е. использовать частично структуру с перпендикулярным расположением p-n– перехода.

Поделиться:
Популярные книги

Кодекс Крови. Книга ХVI

Борзых М.
16. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХVI

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Отличница для ректора. Запретная магия

Воронцова Александра
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отличница для ректора. Запретная магия

Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946

Коллектив авторов
Россия. XX век. Документы
Документальная литература:
прочая документальная литература
военная документалистика
5.00
рейтинг книги
Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Секреты серой Мыши

Страйк Кира
Любовные романы:
любовно-фантастические романы
6.60
рейтинг книги
Секреты серой Мыши