Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если при параллельном расположении концентрация созданных светом пар M убывает от поверхности в глубь полупроводника как в n– , так и в p– области, то при перпендикулярном расположении это характерно лишь для обращенной к свету области кристалла, например n-области, в то время как в p-области наибольшее количество пар образуется у p-n– перехода. Концентрация пар на глубине l подчиняется соотношению, полученному в результате дифференцирования выражения, определяющего убывание энергии волны в е раз при поглощении света полупроводником:

M=N0? exp (-?l),

где N0

число квантов, падающих на единицу поверхности полупроводника.

Концентрация пар, уменьшающаяся в глубину полупроводника, может быть подсчитана для области поглощения полупроводникового материала с помощью зависимости а(Е) (см. рис. 2.1).

Результаты таких расчетов для кремния, выполненных при нескольких значениях длины волны, показаны на рис. 2.7. Вертикальные линии, ограничивающие области, определяемые диффузионной длиной носителей заряда в материале п- и p-типа, позволяют наглядно оценить процесс собирания носителей заряда при перпендикулярном расположении p-n– перехода относительно падающего излучения (см. рис. 2.6, a).

Ординаты построенных кривых пропорциональны ? exp (—?l), абсциссы — расстоянию в глубь полупроводника от освещаемой поверхности, площадь между осями и каждой из кривых — потоку падающих квантов, а площадь, ограниченная кривой и ординатами, соответствующими l=l?+Ln и l=l?-Lp (заштрихованная часть), — току короткого замыкания кремниевой пластины с p-n– переходом.

Таким образом, отношение заштрихованной площади к общей площади под кривой дает возможность в соответствии с соотношением для квантового выхода внутреннего фотоэффекта определить эффективность собирания ? (при условии, конечно, что квантовый выход фотоионизации ?=1).

Планарная конструкция солнечных элементов, изображенная на рис. 2.6,а, стала основной и получила наибольшее распространение. Такие солнечные элементы были созданы из самых разнообразных материалов, причем направления оптимизации этой конструкции можно легко определить, анализируя результаты расчетов, аналогичные выполненным для кремния и представленным в графической форме на рис. 2.7.

Очевидно, что для повышения ? и Ik3 необходимо увеличивать диффузионную длину неосновных носителей заряда по обе стороны p-n– перехода, что может быть достигнуто выбором соответствующих исходных материалов и сохранением высоких значений L в процессе изготовления p-n– переходов. При невозможности увеличить L в области полупроводника, примыкающей к освещаемой поверхности (Lp на рис. 2.6), необходимо приблизить p-n– переход к освещаемой поверхности, чтобы удовлетворялось соотношение Lp>>l?, где lл — глубина p-n– перехода, и все созданные светом носители заряда могли быть собраны и разделены полем p-n– перехода, как будет видно из результатов исследований, описываемых в гл. 4 и 5.

Подобное же условие следует выполнять и для базовой области солнечного элемента (расположенной за p-n– переходом). Толщина солнечного элемента, определяемая в основном базовой областью, не должна

быть меньше глубины проникновения в полупроводник излучения длинноволновой части фотоактивной области спектра (энергия квантов hv>Eg), а диффузионная длина неосновных носителей заряда в базовой области должна соответствовать толщине элемента и глубине проникновения света.

Вольт-амперная характеристика солнечного элемента

На основные фотоэлектрические параметры солнечных элементов, такие, как вольт-амперная характеристика и спектральная чувствительность, влияют и оптические, и электрофизические свойства полупроводника. Лишь детальный анализ позволяет определить, чем вызвана недостаточно высокая эффективность данного солнечного элемента. Однако для этого прежде всего необходимо измерить основные его характеристики, что дает возможность понять причины возникновения, природу и преобладающий вид потерь.

Уже в первых работах, посвященных теории и экспериментальному изучению свойств солнечных элементов, было показано, что вольт-амперная характеристика солнечного элемента отличается от вольт-амперной характеристики полупроводникового диода появлением члена Iф, обозначающего собой ток, генерируемый элементом под действием освещения, часть которого Iд течет через диод, а другая часть I — через внешнюю нагрузку:

Iф=I?+I

где

Iд=I0(exp(qU/KT) -1) —

обычная темновая характеристика, в которой I0 обратный ток насыщения p-n– перехода; q — заряд электрона; T — абсолютная температура, К — постоянная Больцмана; U — напряжение. При разомкнутой внешней цепи, когда ее сопротивление бесконечно велико и I=0, из приведенных уравнений можно определить напряжение холостого хода солнечного элемента:

Ux.x=ln(Iд/I0+1)KT/q.

Для реального солнечного элемента характерно наличие последовательного сопротивления контактных слоев, сопротивлений каждой из р- и n– областей элемента, переходных сопротивлений металл — полупроводник, а также шунтирующего сопротивления Rш, отражающего возможные поверхностные и объемные утечки тока по сопротивлению, параллельному p-n– переходу. Учет этих сопротивлений и рекомбинации в p-n– переходе приводит к развернутому выражению для вольт-амперной характеристики:

ln(I+Iф/i0 – U-IRп /I0Rш+1) = q/AKT(U-IRп).

В уравнение введен коэффициент А, отражающий степень приближения параметров реального прибора к характеристикам идеального.

Это уравнение можно записать в более удобном для практического использования виде:

I= Iф– I0(exp q(U+IRп/АКТ)-1) U+ IRn/ Rш

Поделиться:
Популярные книги

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи