Чтение онлайн

на главную - закладки

Жанры

Совершенная строгость. Григорий Перельман: гений и задача тысячелетия
Шрифт:

"Ну так сделай это", — сказал он. Маткружок, решила я, — это место, где я могу думать самостоятельно. Меня охватило замешательство. Я склонилась над листком и за пару минут решила задачу. И тогда я почувствовала такое облегчение, что в ту же секунду превратилась в человека, который жить не может без математики. Зависимость не оставляла до поступления в институт, где меня поймали на незаконной замене обязательного гуманитарного курса расширенным исчислением. Этот интеллектуальный кайф — поиски математического решения и его открытие — был настолько силен, что заставлял чувствовать разом влюбленность, надежду, истину, торжество справедливости.

Математический кружок, где занимался Гриша Перельман, был чистым экспериментом. Преподаватель, которому профессор

Натансон решил доверить своего протеже, был высокий, веснушчатый, светловолосый, горластый человек по имени Сергей Рукшин. Ему было всего девятнадцать. У него не было опыта ведения маткружка. У него не было ассистентов. Зато у него были непомерные амбиции и страх оказаться не на высоте. Днем Рукшин был старшекурсником Ленинградского госуниверситета. Дважды в неделю он надевал пиджак и галстук, преображаясь во взрослого, и шел на занятия во Дворец пионеров.

В среде смирных и чинных ленинградских математиков Сергей Рукшин был аутсайдером. Он вырос в Пушкине неподалеку от Ленинграда и был трудным ребенком. Когда Сергею было пятнадцать, он совершил несколько незначительных правонарушений. Тогда единственным привлекательным занятием ему казался бокс. Жизненный путь его просматривался вполне отчетливо: учеба в ПТУ, армейская служба и короткая из-за алкоголя и драк жизнь, — путь, который прошли многие советские мужчины того поколения.

Эта перспектива так испугала родителей Сергея, что они мольбами (а возможно, и взяткой) добились невозможного: их сын поступил в математическую спецшколу. Потом произошло еще одно чудо: Рукшин влюбился в математику и полностью отдался ей. Он участвовал в олимпиадах, но проигрывал соперникам, которые готовились к состязаниям годами. Тем не менее ему казалось, что он знает способ победить, просто не может добиться этого сам. Поэтому он сколотил команду из школьников всего на год младше, начал заниматься с ними — и они достигли успеха. Потом он занялся подготовкой старшеклассников по всему Ленинграду. Затем Рукшин сделался ассистентом во Дворце пионеров, а год спустя, когда преподаватель, которому он ассистировал, получил работу в другом городе, Сергей сам начал преподавать.

Как любой начинающий педагог, Рукшин слегка побаивался своих учеников. В его первую группу попали Перельман, Голованов, Судаков, еще несколько мальчиков всего на несколько лет младше Рукшина, которые хотели побеждать на математических соревнованиях. И Рукшин мог доказать свое право обучать их, только сделавшись лучшим на свете тренером-математиком.

Именно это он и сделал. В следующие десятилетия подопечные Сергея Рукшина получили на международных математических олимпиадах более семидесяти медалей (около сорока — золотых). В последние двадцать лет примерно половина российских участников соревнований прошли выучку у Рукшина либо у одного из его учеников, усвоивших методы учителя.

Не вполне ясно, что делает метод Рукшина уникальным.

Я до сих пор не понимаю, как он это делает, — признается мне Судаков — полный, лысеющий человек, специалист в области теории вычислительных машин из Иерусалима, — несмотря на то что я знаю кое-что о психологии. Мы приходили, рассаживались, нам давали задачи. Мы их решали. Рукшин сидел за своим столом. Когда кому-нибудь из нас удавалось решить задачу, он шел к Рукшину и объяснял свое решение. Может быть, обсуждал его с наставником. Вот и все. Каково? — Судаков смотрит на меня с видом победителя через стол в кафе.

— Но ведь так все делают, — произношу я то, чего от меня, по всей видимости, ждут.

— Вот именно! Об этом и речь, — заключает радостно ерзающий на стуле Судаков.

Я видела, как проходят занятия в Петербургском математическом центре для одаренных детей — так теперь называется разросшийся кружок Сергея Рукшина, который посещают примерно двести детей в возрасте одиннадцати лет и старше. Как и группа Перельмана, они приходят на занятия дважды в неделю после школы. В конце каждого занятия (двухчасового для младших школьников, долгого, иногда до ночи — для старшеклассников) ученики

получают домашнее задание. Рукшин утверждает, что один из его уникальных методов заключается в том, чтобы правильно подобрать задания. Наставник должен изучить несколько списков заданий и выбрать те, которые помогут ученикам достичь прогресса в течение следующих нескольких часов. Через три дня ученики приносят собственные решения, которые они объясняют ассистентам в течение первого часа занятий. На втором часу наставник записывает правильные решения на доске и объясняет их. С течением времени ученики начинают самостоятельно объяснять свои решения остальной группе.

Я наблюдала, как младшие ученики сражались со следующей задачей: "В классной комнате находятся шесть человек. Докажите, что среди них должны быть по меньшей мере трое, ни один из которых не знает другого, или же трое, знакомые друг с другом". Ассистенты советуют детям нарисовать следующую схему:

Двое из шести детей, корпевших над задачей, поняли, что рисунок можно дополнить одним из трех способов:

или:

Задача, с которой успешно справились эти двое, заключалась в том, чтобы графическим, а потому неопровержимым путем показать, что должно быть по крайней мере трое людей, ни один из которых не знает другого, или же, напротив, знакомых друг с другом. Слушать детей, впервые пытавшихся артикулировать свои мысли, было мучительно.

Математикам эта задача известна как головоломка о вечеринке. В более общем виде она выглядит так: сколько людей следует пригласить на вечеринку, чтобы по крайней мере т гостей оказались знакомы друг с другом или по крайней мере п гостей не были знакомы друг с другом. Эта головоломка является частным случаем теории Рамсея — системы теорем,сформулированных английским математиком Фрэнком Рамсеем. Большинство подобных задач касаются числа элементов, нужного, чтобы удовлетворять определенным условиям. Сколько детей должно быть у женщины, чтобы двое из них наверняка оказались одного пола? Трое. Сколько людей должно прийти на вечеринку, чтобы по крайней мере трое из них не знали (или, напротив, знали) друг друга? Шестеро. Сколько голубей нужно, чтобы по меньшей мере в одном гнезде оказались два или более голубей? На одного больше, чем число гнезд.

Дети — по крайней мере некоторые — со временем узнают о теории Рамсея. Сейчас же они учатся смотреть на мир так, чтобы заинтересоваться этой теорией и вообще увидеть порядок в неупорядоченном мире. Для подавляющего большинства школьники или гости вечеринки — только люди. Математики же видят в них элементы структуры, а в их взаимоотношениях — закономерности. Большинство учителей математики, кажется, верят в то, что некоторые дети изначально предрасположены к поиску взаимосвязей. Выделив этих детей, их нужно обучать и развивать их странную способность видеть треугольники и шестиугольники там, где все остальные видят просто вечеринку.

"Это мое ноу-хау, — заявил мне Рукшин. — Я понял тридцать лет назад, что необходимо выслушивать каждого ребенка, который считает, что сумел решить задачу". В других маткружках дети рассказывали о своих вариантах решения у доски, и дискуссия заканчивалась после первого же правильного ответа. Тактика же Рукшина заключается в том, чтобы каждый ребенок рассказал о своем варианте решения, о своих удачах, трудностях и ошибках.

Это, возможно, наиболее трудоемкий метод обучения из существующих: ни один ученик и ни один наставник не может остаться в стороне. "Мы учим детей говорить, а преподавателей — понимать их невнятную речь и невнятные мысли".

Поделиться:
Популярные книги

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Газлайтер. Том 18

Володин Григорий Григорьевич
18. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 18

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Новый Рал 9

Северный Лис
9. Рал!
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Новый Рал 9

Право на месть

Ледова Анна
3. Академия Ровельхейм
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на месть

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Ржевский 6

Афанасьев Семён
6. Ржевский
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Ржевский 6

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы