Статьи
Шрифт:
Именно в духе приведенного выше примера я и использовал понятия "более электростатической природы, "и исследовал влияние тел с высокой [диэлектрической] проницаемостью, и обнаружил, например, важность качества стекла, из которого изготовлена трубка. Я также старался выяснить влияние среды с высокой [диэлектрической] проницаемостью, используя кислород. Из грубой оценки получалось, что кислородная трубка при возбуждении при тех же условиях, — настолько, насколько можно это определить, — дает больше света; но это может, конечно, быть обусловлено многими причинами.
Ни мало не сомневаясь в том, что при предосторожностях, принятых Проф. Дж. Дж. Томпсоном, возбуждаемое свечение обуславливалось только электродинамическим воздействием, я бы все таки сказал, что во многих экспериментах я наблюдал удивительные случаи неэффективности экранирования, и я также обнаружил, что электрификация через
В своем первоначальном сообщении в ElectricianПроф. Дж. Дж. Томпсон ссылается на тот факт, что свечение в трубке вблизи провода, через который разряжается Лейденская банка, было отмечено Хитторфом. Я думаю, что упомянутый эффект слабого свечения отмечался многими экспериментаторами, но в моих экспериментах эффекты были намного мощнее тех, что обычно отмечались.
ЗАМЕТКИ ОБ УНИПОЛЯРНОМ ДИНАМО*
Фундаментальным открытиям, великим достижениям интеллекта свойственно сохранять неистощающуюся власть над воображением мыслителя. Памятный эксперимент Фарадея с диском, вращающимся между двумя полюсами магнита, принесший столь величественный плод, уже давно вошел в повседневную жизнь; хотя этот зародыш современного динамо и мотора имеет некоторые особенности, которые даже сегодня изумят нас, и достойны самого пристального изучения.
Возьмем, например, случай, когда диск из железа или другого металла вращается между двумя противоположными полюсами магнита, и полярные поверхности полностью покрывают обе стороны диска. И допустим, что ток снимается или подается на него контактами однородно по всему периметру диска. Первое имеет место в моторе. Во всех обыкновенных моторах работа зависит от определенного смещения или изменения результирующей магнитного притяжения, воздействующего на якорь, и этот процесс осуществляется либо неким механическим приспособлением в моторе, или воздействием токов соответствующего характера. Мы можем объяснить работу такого мотора точно так же, как мы объясняем работу водяного колеса. Но в вышеприведенном примере диска, полностью окруженного полярными поверхностями, нет ни сдвига магнитного воздействия, ни какого-либо изменения, насколько известно, и все-таки вращение происходит. Поэтому здесь обычные рассуждения не применимы. Мы не можем даже дать поверхностного объяснения этому, как в обычных моторах, и работа устройства станет понятной, только после того, как мы поймем самую природу задействованных в ней сил и охватим тайну невидимого связующего механизма.
Для случая динамо машины диск оказывается столь же интересным объектом изучения. Помимо удивительной способности давать токи одного направления без применения каких- либо переключающих устройств, такая машина отличается от обычного динамо еще и тем, что нет реакции между якорем и полем. Ток якоря стремится создать намагничивание под прямыми углами к намагничиванию от тока поля, но поскольку ток снимается однородно во всех точках периметра, и поскольку, если быть точными, внешняя цепь тоже может быть построена совершенно симметричной относительно поля магнита, никакой реакции не может возникнуть. Это верно однако только при слабо возбужденных магнитах, потому что при более или менее интенсивных магнитах оба намагничивания под прямыми углами друг к другу по-видимому взаимодействуют друг с другом.
И по одной только вышеуказанной причине получается, что выход такой машины на единицу веса должен быть больше, чем у любой другой машины, в которой ток якоря стремится размагнитить поле. Выдающийся выход униполярного динамо Форбса и опыт автора подтверждают эту точку зрения.
Опять же, поражает легкость, с которой делается так, чтобы эта машина возбуждала себя, но это может объясняться — помимо отсутствия реакции якоря — совершенной гладкостью тока и тем, что само-индукция здесь не существует.
Если полюса не покрывают диск полностью с обеих сторон, то конечно же, если диск не разделен должным образом на части, такая машина будет очень неэффективной. И вновь в этом случае есть моменты, которые стоит отметить. Если диск вращается, а ток поля прерывается, то ток через якорь будет продолжать течь, и полевые магниты будут терять свою силу сравнительно медленно. Причина этого станет сразу ясна, когда мы разберемся в направлении токов, идущих в диске.
В соответствии со схемой на Рис. 1, dэто диск со скользящими контактами В
Вследствие этого будет существовать постоянна тенденция к уменьшению течения тока по пути А В' m В,тогда как на пути А В' n Втакого противодействия не будет, и в влияние второй ветви или пути будет более или менее перевешивать влияние первой. Совокупный эффект токов в обеих ветвях можно представить как эффект одного тока в направлении возбуждающего поля. Другими словами, завихряющиеся токи, циркулирующие в диске, будут возбуждать поле магнита. Это т результат прямо противоположен тому, который мы могли бы сначала предположить, потому что мы естественно могли бы ожидать, что результирующий эффект токов якоря будет противоположным эффекту от токов поля, как обычно бывает, когда первичный и вторичный проводники находятся друг с другом в индуктивной связи. Но следует помнить, что это проистекает из конкретного расположения в данном случае, а именно, когда ток может течь по двум путям, и он выбирает тот, где меньше противодействие его течению. Из этого мы видим, что завихряющиеся токи в диске будут продолжать течь, и поле магнита будет терять свою силу сравнительно медленно и может даже определенную силу сохранять, пока продолжается вращение диска.
Конечно, результат будет во многом зависеть от сопротивления и геометрических размеров пути результирующего завихряющегося тока, а также от скорости вращения; именно эти факторы определяют торможение этого тока и его положение относительно поля. При определенной скорости будет наблюдаться максимальное возбуждающее воздействие; при более высоких скоростях оно будет постепенно спадать до нуля и наконец развернется, то есть результирующий эффект завихряющихся токов будет ослаблять поле. Эту реакцию лучше всего можно продемонстрировать экспериментально, создав поля N Sи N' S1легко движущиеся по оси, концентричной с осью диска. Если последний будет как и раньше вращаться в направлении стрелки D,то поле будет увлекаться в том же направлении с вращающим моментом, который вплоть до определенной точки будет увеличиваться со скоростью вращения, потом спадать, и, пройдя через ноль, станет наконец отрицательным. То есть, поле начнет вращаться противоположно диску. В экспериментах с моторами переменного тока, где поле смещается токами с различающейся фазой, этот интересных эффект тоже наблюдался. При очень низких скоростях вращения поля мотор демонстрировал вращающий момент в 900 фунтов и более, будучи измеренный на шкиве в 12 дюймов диаметром. Когда скорость вращения полюсов возрастала, вращающий момент снижался, становясь наконец нулевым, потом становился отрицательным, и тогда якорь начинал вращаться противоположно полю.