Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.

Шрифт:
Список принятых сокращений
Гр – гранулы
Ггл – гранулы гликогена
ГЭР – гранулярный эндоплазматический ретикулум
КВ – коллагеновые волокна
КГ – Комплекс Гольджи
Л – лейкоцит
Лф – липофусцин
Мф – макрофаг
Мх – митохондрии
Н – сегментоядерный нейтрофил
ПрК – просвет капилляра
Р – рибосомы
СТ – соединительная ткань
ТК – тучные клетки
Фб – фибробласты
ЭПР – эндоплазматический ретикулум
Эр – эритроцит
Эц – эндотелиоцит
Я – ядро
ЯМ – ядерная мембрана
Предисловие
В настоящее время существует большая потребность населения России в ортопедической стоматологической помощи, которая по данным эпидемиологических обследований варьирует от 60 до 93,3 % среди взрослого населения страны. Это зависит от распространенности стоматологических
В представляемой монографии авторами проведен комплекс экспериментальных и клинических исследований. Это позволило им при доклиническом исследовании изучить характер, объем, динамику и степень устойчивости изменений в подкожной соединительной ткани экспериментальных животных, окружающей имплантаты из пластмасс и металлов. Проведенные авторами морфологические, в том числе ультраструктурные исследования позволили выявить динамику деструктивных, компенсаторных и репаративных изменений в клеточных и неклеточных компонентах подкожной соединительной ткани после имплантации в нее различных видов пластмасс и металлов. Для эксперимента авторами были выбраны быстротвердеющая пластмасса и пластмасса горячей полимеризации используемая для изготовления базисов съёмных зубных протезов, а также три различных образца металлов, а именно: нержавеющая сталь, которую относят к биотолерантным материалам, сплав золота и титана, которые относят к биоинертным материалам. В результате проведенного эксперимента на современном морфологическом уровне с использованием однотипной модели и адекватных методов анализа авторам удалось в монографии представить сведения о местном тканевом ответе и влиянии имплантированных материалов в сроки от 12 часов до года на печень животного. Можно с уверенностью говорить, что использованная в исследовании для изучения особенностей местного тканевого ответа модель внедрения образцов стоматологических материалов в подкожную соединительную ткань животных, может применяться для тестирования новых стоматологических материалов на этапе их доклинического изучения, а не только для изучения местной тканевой реакции, а также реакции внутренних органов. Экспериментальное исследование позволило авторам определить также некоторые патогенетические механизмы развития и патофизиологические особенности проявления местного тканевого ответа и реакции внутренних органов в ответ на имплантацию различных стоматологических материалов, используемых для дентальной имплантации и последующего временного и окончательного зубного протезирования. Особое внимание в прикладной части монографии уделено характеристике клинических признаков периимплантита в ближайший и отдаленных срок после дентальной имплантации и зубного протезирования. Это важно для ранней диагностики периимплантита и благоприятной стоматологической реабилитации, чтобы исключить в конечном итоге потери опоры в виде дентального имплантата. Раннее выявление этого осложнения как воспалительного процесса в зоне дентального имплантата позволяет принять ряд мер по купированию воспалительной резорбции костной ткани альвеолярного отростка челюсти и профилактике потери его костного объема.
Представляется, что монография Д.В. Абрамова и А.К. Иорданишвили «Конструкционные стоматологические материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и зубном протезировании» будет полезна не только врачам-стоматологам, патофизиологам, аллергологам, экологам, но и организаторам здравоохранения.
Президент Международной академии наук экологии,
заслуженный эколог РФ,
доктор технических наук, профессор В.А. Рогалёв
Введение
Постоянное стремление человека заменить потерянные зубы различными материалами животного, человеческого и минерального происхождения известны еще с древних времен. Это подтверждают археологические находки. Найденный, например, на территории современного Гондураса фрагмент нижней челюсти инка (VI в. до н. э.), в котором на месте 42, 41 и 31-го зубов сохранились имплантаты из панциря морских мидий. На территории Шантамбре (Франция) найден череп женщины, жившей в 1 в. н. э., с металлическим имплантатом в лунке клыка верхней челюсти. Ученые начали поиск имплантационного материала.
В 1888 г. Berry разрабатывает принцип биосовместимости. Начинается использование различных биологических материалов для изготовления, как имплантата, так и протеза, изучаются свойства инертности, толерантности, происходит активное внедрение в клиническую практику металлов. Были выявлены уникальные свойства титана – легкость, устойчивость к коррозии.
В 1965 г. профессор Ингвар Бранемарк возглавлял группу исследователей в Университете Гетеборга (Швеция), проводивших исследования, которые в конечном счете привели к открытию явления остеоинтеграции (приживления титана в костной ткани).
Важным направлением стали поиски приемлемых для имплантации материалов. Так, J. Magillo в 1807 г. предложил имплантат из золота, J. Edmuns и Н. Harris – фарфоровый имплантат на платиновой основе, J. Bonwell – имплантат в виде золотых и иридиевых трубок, a I. Pedchelon – серебряную капсулу в качестве имплантата для фарфоровой коронки.
К прообразам современного винтового имплантата следует отнести конструкции американских врачей R. Adams и A. Strock. Первый в 1937 г. изобрел имплантат с винтовой нарезкой на поверхности, а второй в 1939 г. предложил имплантат из кобальта, хрома и молибдена.
Одновременно с конструированием имплантатов проводились оригинальные исследования морфогенеза, физиологии и биомеханики при имплантационном лечении. В нашей стране быстрое развитие дентальной имплантации началось в 80-х годах прошлого столетия. Разработанные С.П. Чепулисом, А.С. Черникисом, О.П. Суровым и другими специалистами плоские имплантаты в 1983 г. были переданы для клинических испытаний в ЦНИИС (В.М. Безруков, А.И. Матвеева, А.А. Кулаков и соавт., 1987–1996) и в МГМСУ (Т.Г. Робустова, А.И. Ушаков и соавт., 1987–1996). Полученные положительные результаты и изучении клинико-теоретических вопросов при использовании плоских имплантатов нашли отражение в методических рекомендациях, составленных В.М. Безруковым и соавт., А.И. Матвеевой, А.А. Кулаковым, Т.Г. Робустовой и соавт. и в диссертационных работах А.И. Матвеевой, А.А. Кулакова, В.А. Вигдерович, И.В. Балуды, Абу Асали Эяда, А.И. Сидельникова, А.И. Жусева, Р.Ш. Гветадзе и др. Официальное утверждение плоских конструкций, выпуск их ВНИИМТ, а также монография О.Н. Сурова способствовали внедрению плоских имплантатов в практику стоматологических клиник нашей страны. На их основе ряд новых конструкций разработали Э.Г. Амрахов, В.В. Трофимов и В.Ф. Дадыкина, В.Н. Лясников и соавт.,
A.И. Ушаков, С.Ю. Иванов. Эволюционировали также опорные, надальвеолярные части имплантатов для фиксации протезов. В 80-х годах в СССР, а с 1991 г. в России были созданы отечественные имплантаты в форме корня зуба. Первыми разработчиками отечественных имплантатов в форме корня зуба стали М.З. Миргазизов и соавт. B.Э. Гюнтер, В.И. Итин и соавт.
Опыт зубной имплантации во всех ее аспектах продолжает накапливаться и критически оцениваться. От хирургов стоматологов и специалистов ортопедической стоматологии теперь, как никогда раньше, требуется прочное знание общей терапии для правильного отбора, предымплантационной оценки, подготовки и лечения больных.
В последнии годы поиск быстрых и эстетических решений в период ортопедической реабилитации пациентов после дентальной имплантации привел к применению большого количества временных зубопротезных конструкций (коронок, абатментов) из различных материалов. Таких как пластмассы, металлические сплавы и т. п. Влияние этих конструкций на физиологические процессы на окружающие ткани и организм в целом изучаются во всем мире и будут требовать дальнейших исследований.
Известно, что многие (если не все) формально устойчивые с теоретической физико-химической точки зрения материалы, под влиянием биологически активных сред подвергаются в организме коррозии и постепенному разрушению [Hench L., Wilson I., 1984]. Продукты коррозии имплантированных материалов могут обладать токсическими свойствами в ультранизких концентрациях, приводя к развитию устойчивых патологических изменений в окружающих тканях, и, более того, вызывая подчас весьма значительные нарушения в деятельности организма на фоне внешне вполне успешной интеграции имплантата в костную ткань.