Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Прозрачность однозначно связана с другой физической характеристикой — показателем ослабления.

Мы уже знаем, что при прохождении параллельного пучка света через тонкий слой воды часть фотонов поглотится, а часть рассеется, т. е. изменит направление своего движения. Число поглощенных фотонов равно: Nпогл = N0z, а число рассеянных: Nрас = N0z, где N0 — число падающих фотонов, z — толщина слоя, и — соответственно показатели поглощения и […]. Общее число фотонов, потерянных пучком в этом слое, равно сумме поглощенных и рассеянных: Nобщ = Nпогл + Nрас = ( + )N0z = N0z,

где = + . Коэффициент пропорциональности в этой формуле называется показателем ослабления. Он равен сумме показателей поглощения и рассеяния. Величина показателя ослабления зависит от свойств данной среды и является одной из ее физических характеристик. Значения показателя ослабления, так же как и показателей поглощения и рассеяния, даются обычно в обратных метрах (м– 1).

А как изменится световой пучок, пройдя в среде расстояние z? Разобьем это расстояние на совокупность достаточно малых отрезков z, в каждом из которых ослабление будет равно Фz, где Ф — значение светового потока в начале этого отрезка, а затем просуммируем ослабление на всех этих отрезках. Можно показать, что величина светового потока, прошедшего расстояние z в среде, будет равна: Фz = Ф0•е– z, где Ф0 — его первоначальная величина. Основание степени в этой формуле — число е — называют «натуральным», оно широко используется в высшей математике Число это иррациональное, его приближенное значение — 2,72.

Часто предпочитают иметь дело с обычным десятичным основанием. Наша формула и в этом случае сохраняет свой вид: Фz = Ф0•10'z, но здесь уже другой показатель ослабления; его значение в 2,3 раза меньше показателя ослабления (показателя при натуральном основании). Формула Фz = Ф0•10'z позволяет нагляднее представить себе физический смысл показателя ослабления: ' — это величина, обратная расстоянию, которое пучок света должен пройти в среде, чтобы ослабиться в 10 раз. Используя полученную формулу, легко найти связь между показателем ослабления и прозрачностью:

И обратно: ' = — lg.

Закон ослабления светового пучка в зависимости от расстояния, пройденного им в среде, был открыт Пьером Бугером. Значение его огромно, оно выходит далеко за рамки фотометрии. Закону Бугера подчиняется ослабление любого прямого потока энергии, будь это рентгеновы или гамма-лучи, электроны, нейтроны или какие-нибудь другие частицы. Тщательные исследования, проведенные академиком С. И. Вавиловым, показали, что закон Бугера справедлив в очень широких пределах изменения интенсивности света от 10– 14 до 105 джоуль/сек•м2 (т. е. примерно в 1020 раз). Отступления от этого закона удается наблюдать лишь в веществах с очень большими длительностями возбужденных состояний молекул (например, в урановых стеклах), или при необычайно высоких мощностях светового пучка [15] .

15

Получение таких пучков стало возможно с появлением лазеров. Изучать явления подобного рода — задача специального раздела оптики — нелинейной оптики.

Суть закона Бугера заключается в следующем: ослабление света на пути, составленном из нескольких конечных отрезков, равно не сумме, а произведению ослаблений на каждом из этих отрезков (в формуле Бугера этот факт подчеркивается тем, что оптическая длина пути, т. е. произведение показателя ослабления на длину отрезка z, находится в показателе степени).

Принцип действия современных прозрачномеров основан на использовании закона Бугера. В этих приборах измеряется световой поток, прошедший через слой воды определенной толщины (l). Сопоставляя значение этого светового потока с величиной падающего,

легко найти показатель ослабления:

Ф = Ф010– 'l, откуда:

Прозрачномеры делятся на две основные группы: приборы, измеряющие прозрачность непосредственно в море (приборы in situ), и приборы для измерения прозрачности в пробах воды на борту корабля или в стационарной лаборатории.

Приборы, входящие в первую группу, предназначены для вертикального зондирования в толще океана или для непрерывной регистрации прозрачности на заданном горизонте во время хода корабля. Первую модель подводного прозрачномера создал в 1922 г. Н. Н. Калитин. Он использовал фотоэлементы с внешним фотоэффектом. Спустя 10 лет, когда появились фотоэлементы с запирающим слоем, в частности селеновые, Г. Петтерссон разработал фотоэлектрический прозрачномер, получивший широкое распространение в океанографических исследованиях. Прозрачномер Петтерссона представлял собой герметическую камеру, в которой помещался источник света — лампочка и приемный фотоэлемент, а также прикрепленное на расстоянии одного метра зеркало. Свет от лампочки, пройдя через линзу, в виде слабо расходящегося пучка выходил в воду и попадал на зеркало, укрепленное на расстоянии одного метра от камеры. Отраженный от зеркала свет возвращался на фотоэлемент.

Петтерссоновский прозрачномер конструктивно был улучшен И. Йозефом. В его измерителе прозрачности имеются две герметичные камеры. В одной из них помещается коллимированный источник света — лампа накаливания с линзой и диафрагмой — и контрольный фотоэлемент. Во второй камере находились конденсорная линза и диафрагма, препятствующая попаданию дневного света на установленный в этой камере приемный фотоэлемент. Между линзой и диафрагмой помещался диск с цветными светофильтрами. Обе камеры жестко соединялись между собой трубой с прорезями, в которую свободно входила морская вода.

Создаваемые в дальнейшем у нас и за рубежом прозрачномеры принципиально не отличались от упомянутых приборов (лишь вместо фотоэлементов стали использоваться фотоумножители). Внешний вид и оптическая схема одного фотоэлектрического прозрачномера (ФПР) представлены на рис. 20 и 21. Конструкция этого прибора и его последующих модификаций разрабатывалась под руководством А. К. Карелина.

Интересные образцы фотоэлектрических прозрачномеров сконструированы Г. Г. Неуйминым и А. Н. Парамоновым. Один из них (МИФП-3) позволяет осуществлять зондирование прозрачности до глубины 2000 м. Если все перечисленные выше прозрачномеры соединялись с лабораторией на борту судна с помощью кабеля, то в МИФП-3 используется телеметрическая или акустическая связь.

Рис. 20. Внешний вид фотоэлектрического прозрачномера ФПР

Рис. 21. Оптическая схема измерителя прозрачности

1 — лампа; 2 — зеркало; 3, 7, 12, 14 — линзы; 4, 8, 11, 13 — диафрагмы; 5 — теплозащитное стекло; 6 — опорный фотоэлемент; 9, 10 — защитные иллюминаторы; 15 — измерительный фотоэлемент; 16 — светофильтры

Неуймин разработал также прозрачномер, в котором можно менять длину пути света в воде, или, как говорят, измерительную базу. В этом прозрачномере использован принцип многократного отражения светового луча от системы из трех сферических зеркал одинакового радиуса и кривизны.

Наряду с вертикальным зондированием прозрачности представляет интерес и ее регистрация во время движения корабля. Один из первых вариантов такого прибора создан И. Йозефом в 1946 г. Прибор буксировался за кормой корабля на металлическом тросе и соединялся с лабораторией кабелем. Недостаток же этого метода измерения состоял в том, что прибор «рыскал» и не находился постоянно на заданной глубине.

К. Полевицкий сконструировал буксируемый прозрачномер, жестко связанный с кораблем специальной штангой. В 1952 г. Йозеф для непрерывной регистрации прозрачности использовал шахту в трюме корабля «Гаусс». В нее он поместил простейший прозрачномер. Через отверстие в днище корабля в шахту непрерывно поступала морская вода. С помощью такого устройства Йозеф осуществил обширные исследования в Атлантическом океане и Северном море.

Поделиться:
Популярные книги

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Ринсвинд и Плоский мир

Пратчетт Терри Дэвид Джон
Плоский мир
Фантастика:
фэнтези
7.57
рейтинг книги
Ринсвинд и Плоский мир

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Феномен

Поселягин Владимир Геннадьевич
2. Уникум
Фантастика:
боевая фантастика
6.50
рейтинг книги
Феномен

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Инквизитор тьмы 3

Шмаков Алексей Семенович
3. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор тьмы 3

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых