Свет в море
Шрифт:
Воды открытого океана и внутренних морей весьма рельефно отличаются друг от друга содержанием «желтого вещества», о концентрации которого в море легко судить по измерениям прозрачности в синей или ультрафиолетовой части спектра.
Можно было бы привести еще много примеров, когда оптика моря оказывается полезной при океанологических исследованиях.
Солнечный свет в море
Свет на поверхности моря
Изучая естественный свет в толще моря, мы прежде всего должны задаться вопросом: что представляет собой свет, освещающий его поверхность?
Каждую секунду в результате ядерных реакций в недрах Солнца 564 млн. т водорода превращаются в 560 млн. т гелия; 4 млн. т солнечного водорода излучаются в космос в виде тепла и света.
Энергетическая
Основной характеристикой излучательной способности Солнца принято считать солнечную постоянную, т. е. мощность солнечного излучения, приходящегося на один квадратный сантиметр поверхности, перпендикулярной к падающим лучам и расположенной вне земной атмосферы. Более ли менее точно измерить непосредственно величину солнечной постоянной удалось лишь с открытием космической эры. По современным данным, она составляет 2,00 кал/мин•см2, или 1394 вт/м2.
При прохождении земной атмосферы энергия прямого солнечного излучения ослабевает, частично поглощаясь и частично рассеиваясь. Величина энергии, достигающей поверхности моря, не является постоянной, так как зависит от многих факторов. Чем ниже над горизонтом Солнце, тем большую толщу атмосферы надо преодолеть его лучам и тем больше, следовательно, потери на поглощение и рассеяние. Если путь, который проходит луч в атмосфере, когда Солнце находится в зените, принять за единицу (в метеорологии ее называют «масса атмосферы»), то из приведенных данных можно наглядно представить себе, насколько этот путь увеличивается при понижении высоты Солнца.
Высота Солнца, град. | 90 | 60 | 45 | 30 | 10 | 5 | 1 |
Масса атмосферы | 1,0 | 1,15 | 1,4 | 2,0 | 5,4 | 10,4 | 27 |
Таким образом, когда Солнце только взошло над горизонтом, его лучам надо преодолеть толщу атмосферы в 27 раз большую, чем когда оно находится в зените. Вторым основным фактором, значительно влияющим на ослабление потока солнечной радиации, является прозрачность атмосферы в данном конкретном месте и в данный момент. Чем больше частичек пыли, капель воды, кристалликов льда содержится в атмосфере, тем менее она прозрачна и тем большие потери солнечной энергии мы наблюдаем.
Несмотря на эти потери, поверхность моря получает огромное количество энергии. Так (правда, с большим приближением), можно считать, что в летнее время при высоком положении Солнца один квадратный метр морской поверхности подвергается действию светового излучения мощностью около одного киловатта. Безусловно, эта величина изменяется в очень широких пределах в зависимости от географической широты места и времени года. Эти изменения наглядно иллюстрируются графиком на рис. 24.
Итак, мы кратко рассмотрели энергетическую характеристику прямой солнечной радиации, достигающей поверхности моря. Для оптики моря не меньший интерес представляет спектральный состав солнечного излучения, так как он в основном определяет характер тех оптических процессов, с которыми мы имеем дело при изучении света в море.
Тонкий, поверхностный слой Солнца, имеющий толщину всего около 100–200 км (называемый фотосферой), излучает в пространство энергию в весьма обширном диапазоне длин волн от 100 нм до 30 000 нм. К счастью для всего живущего на Земле, наша атмосфера вносит существенные поправки в этот спектр солнечного излучения. Так, слой озона, опоясывающий земной шар на высоте 40–50 км, поглощает всю ультрафиолетовую радиацию Солнца с длинами волн меньше 290 нм. В противном случае Земля была бы мертва, ибо ультрафиолетовое излучение более коротких длин волн губительно для живых организмов. Значительная часть инфракрасного излучения
Рис. 24. Зависимость облученности поверхности моря от географической широты и времени года (широта: 1—35°; 2—45°; 3—55°; 4—65°)
Рис. 25. Распределение энергии в спектре солнечного излучения при различных высотах Солнца и в условиях идеальной атмосферы
Для оптики моря особый интерес представляют те перемены, которые происходят с изменением высоты Солнца в видимой области спектра, т. е. в диапазоне длин волн от 400 до 760 нм. Как меняется в спектре доля видимого излучения? Это можно узнать из табл. 1, где в процентах к общему излучению приведены данные для ультрафиолетовой, видимой и инфракрасной областей спектра.
Таблица 1
Излучение, нм | Высота Солнца над горизонтом, град. | |||||
---|---|---|---|---|---|---|
5 | 10 | 20 | 30 | 50 | 90 | |
Ультрафиолетовое (295–400) | 0,4 | 1,0 | 2,0 | 2,7 | 3,2 | 4,7 |
Видимое (400–760) | 38,6 | 41,0 | 42,7 | 43,7 | 43,9 | 45,3 |
Инфракрасное (>760) | 61,0 | 58,0 | 55,3 | 54,6 | 52,9 | 50,0 |
Внимательно присмотревшись к этой таблице, можно обнаружить одно примечательное явление. Начиная с высоты Солнца 20° соотношение видимого и инфракрасного излучения изменяется незначительно, тогда как доля ультрафиолетового излучения увеличивается больше чем в два раза.
Поверхность моря освещается не только прямыми лучами Солнца, но и светом, идущим от небосвода, т. е. лучами Солнца, рассеянными атмосферой. Эта рассеянная радиация обладает спектральным составом, отличающимся от спектра прямого излучения Солнца и весьма к тому же изменчивым в зависимости от характера и количества облаков, покрывающих небо. Чтобы наглядно представить себе, насколько разнообразен спектральный состав света, освещающего поверхность моря, обратимся к рис. 26, где показано, как резко отличны спектры прямого и рассеянного солнечного излучения. Для удобства сопоставления кривых излучение, имеющее длину волны 560 нм, принято условно за 100 единиц.
Рис. 26. Спектральный состав суммарной 1, рассеянной 2 и прямой 3 солнечной радиации
Вклад рассеянного света в общее излучение, которое падает на поверхность моря, непостоянен и зависит от высоты Солнца.
Высота Солнца, град. | 5 | 10 | 20 | 30 | 40 | 50 |
Рассеянное излучение, % | 73,4 | 42,9 | 29,0 | 21,0 | 18,0 | 15,4 |