Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Примерно в то же время начинают применяться фотографические пластинки, а несколько позже — и фотопленки. При всем разнообразии конструкций фотометров с использованием фотографических пластинок принцип измерения сводился к следующему.

Помещенная в герметический корпус со стеклянным иллюминатором пластинка погружалась в море на ту или иную глубину. Затем с помощью грузика, опускавшегося по тросу, открывался затвор фотометра. После определенной выдержки (время которой фиксировалось) второй грузик закрывал затвор. Под воздействием света пластинка темнела. Сравнивая степень потемнения этой пластинки с аналогичной, но подвергшейся освещению эталонным источником света, определяли (с учетом времени экспозиции) условия освещенности

на глубине проведения измерений. Когда вместо пластинок применялась фотопленка, в прибор устанавливался часовой механизм, через определенные промежутки времени перематывавший пленку.

Обработка результатов измерений требовала исключительной скрупулезности, а точность полученных результатов была весьма невысока. С помощью таких фотометров удавалось обнаружить свет на глубинах, превышающих 1000 м. Правда, для этого требовалось экспонировать пластинку более часа. Известен опыт, при котором пластинка выдерживалась на глубине 1700 м в течение двух часов, но не обнаружила признаков почернения.

В начале XX в. для измерений стали использовать физическое явление, называемое фотоэлектрическим эффектом, т. е. способность некоторых веществ создавать электрический ток или изменять его величину под воздействием света.

Лучи света, падая на поверхность металлической пластинки (для данной цели используются такие щелочные металлы, как калий или цезий), передают свою энергию электронам, находящимся внутри металла. Приобретенная энергия увеличивает скорость их движения, и электроны могут преодолеть силы, удерживающие их внутри металла, и вылететь за пределы его поверхности, создавая таким образом фотоэлектронную эмиссию с поверхности пластинки (фотокатода). Это элементарное описание фотоэлемента с внешним фотоэффектом. На явлении внешнего фотоэффекта основано действие фотоэлектронных умножителей.

Если вместо металлической пластинки взять стеклянную, нанести на нее светочувствительный слой полупроводникового вещества (например, селена, сернистого таллия, сернистого висмута и т. п.), подключить полученное устройство к внешней цепи и осветить пластинку, то можно наблюдать явление внутреннего фотоэффекта. Под действием света уменьшается внутреннее сопротивление полупроводника. Такие устройства получили наименование фотосопротивлений.

В гидрофотометрии наибольшее применение нашли фотоэлементы с фотоэффектом в запирающем слое. Они также изготовляются из полупроводников — селена, германия, кремния и т. п. Их основным достоинством является возможность получения значительного фототока при освещении активной поверхности без всякого внешнего источника электродвижущей силы.

Применение приемников излучения, действие которых основано на явлении фотоэффекта (фотоэлементов), позволило провести многочисленные измерения освещенности в различных районах Мирового океана.

Принцип действия практически всех современных подводных, фотометров базируется на использовании закона, открытого Столетовым, о том, что величина тока, вырабатываемого фотоэлементом, прямо пропорциональна падающему на него световому потоку. Поэтому, регистрируя значения фототока на различных глубинах, мы можем определить освещенность на интересующем нас горизонте. Естественно, что каждый гидрофотометр проходит предварительную градуировку на фотометрической скамье, где определяется, какой отсчет регистрирующего прибора соответствует тому или иному значению освещенности.

В качестве датчика в гидрофотометрах чаще всего применяют селеновый фотоэлемент с запирающим слоем.

На рис. 36 в схематическом виде изображено устройство такого фотоэлемента. На железную пластинку 1 нанесен слой селена 2, на который напыляется очень тонкая (тысячные доли микрона) золотая или платиновая полупрозрачная пленка 4.

В процессе обработки фотоэлемента на поверхности селена образуется тонкий запирающий слой 3. На полупрозрачную золотую пленку накладывается контактное кольцо 5. Вторым электродом является железная пластинка. Весь фотоэлемент помещается в изолирующий пластмассовый корпус 6.

Кроме простоты устройства селеновый фотоэлемент обладает еще одним немаловажным достоинством: его спектральная чувствительность близка к чувствительности человеческого глаза. Из всех известных в настоящее время фотоэлементов селеновый легче всего откорректировать с помощью светофильтров, так чтобы его чувствительность соответствовала кривой видности глаза (рис. 37).

Для измерений в море фотоэлемент помещается в герметический корпус, иллюминатор которого делается из толстого молочного стекла и имеет выпуклую форму. Нужно это для того, чтобы на поверхности фотоэлемента собирался весь свет, рассеянный в верхней (или в нижней, если иллюминатор направлен вниз) полусфере, а не только лучи, отвесно падающие на приемник излучения.

Внешний вид одного из первых промышленных образцов измерителя подводной освещенности (ФМПО-57) показан на рис. 38. Прибор имеет вид люстры, у которой четыре иллюминатора направлены вверх и один — вниз. В трех из пяти корпусов датчиков прибора перед селеновым фотоэлементом помещены светофильтры: красный, синий и зеленый. Это позволяет не только измерять общий световой поток, но и выделять его спектральные составляющие. Для того чтобы в результате измерений можно было определить интенсивность излучения, идущего из глубин моря к его поверхности, пятый фотоэлемент помещен в корпус, иллюминатор которого обращен вниз.

Рис. 36. Схема устройства селенового фотоэлемента

1 — железная пластинка; 2 — слой селена; 3 — запирающий слой; 4 — золотая или платиновая пленка; 5 — контактное кольцо; 6 — пластмассовый корпус

Рис. 37. Спектральные характеристики селенового фотоэлемента без коррекции 1, с корректирующим светофильтром 2 и спектральная чувствительность глаза 3

< image l:href="#"/>

Рис. 38. Внешний вид измерителя подводной освещенности ФМПО-57

Рис. 39. Комплект прибора ФМПО-64

Прибор ФМПО-57 на тросе океанологической лебедки погружается в море до глубины 100–150 м. Фототок, вырабатываемый селенами под действием света, передается по кабелю на борт судна, где и регистрируется микроамперметром.

При всей простоте конструкции у этого прибора было много недостатков. Дело в том, что освещенность в море меняется в очень широких пределах: от десятков тысяч люксов у поверхности до единиц на глубине около 100 м. А селеновые фотоэлементы очень не любят больших засветок, так как при этом их фототок перестает быть прямо пропорциональным интенсивности света. Другими словами, прибор типа ФМПО-57 начинал работать с достаточной точностью только тогда, когда его погружали на глубину в несколько десятков метров, где освещенность не превышала 100–200 лк. Кроме того, для изучения способности морской воды пропускать свет с различными длинами волн трехцветных светофильтров было явно мало.

Поделиться:
Популярные книги

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Подари мне крылья. 2 часть

Ских Рина
Любовные романы:
любовно-фантастические романы
5.33
рейтинг книги
Подари мне крылья. 2 часть

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Крепость в Лихолесье

Ангина
Фантастика:
фэнтези
5.00
рейтинг книги
Крепость в Лихолесье

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Шайтан Иван 3

Тен Эдуард
3. Шайтан Иван
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Шайтан Иван 3

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия