Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В 1900 г. немецкий физик М. Планк создал квантовую теорию излучения света. Эта теория получила свое дальнейшее развитие в работах А. Эйнштейна, который доказал, что излучение, распространение и поглощение света происходит в виде отдельных порций света — квантов, т. е. своеобразных частиц световой энергии, впоследствии получивших наименование «фотоны» (от греческого слова photos — свет). Чем же они характеризуются?

Фотону присущи многие свойства материальной частицы. Так, он обладает энергией, количеством движения (импульсом) и массой, которые можно определить следующим образом: энергия W = hv; импульс p = hv/c; масса m = hv/c2,

где h — постоянная Планка (6,6•10– 34 дж•сек); с — скорость света в вакууме (3•108 м•сек– 1); v — частота, с которой фотон был излучен, определяемая из соотношения v = c/ сек– 1, где — длина волны света.

Но все же фотон не материальная частица. Все дело в том, что его масса — это масса движения. Масса покоя фотона равна нулю. Другими словами, фотон существует, пока он движется.

Особенность квантовой теории света состоит еще и в том, что эта теория отнюдь не отрицает волновую природу света. Как мы видели, квант энергии количественно выражается через волновую характеристику — частоту световых колебаний

Мириады фотонов пронизывают верхнюю толщу моря со скоростью света (в воде эта скорость в 1,34 раза меньше, чем в воздухе) и несут с собой огромные запасы энергии, излучаемой Солнцем. Представить себе количество фотонов, находящихся в данный момент в океане, так же трудно, как оценить количество содержащихся в нем молекул, исходя из того, что в 1 м3 воды их 3,34•1025.

Но все же примерный подсчет показывает, что летом где-нибудь на Южном берегу Крыма в солнечный день 1 м2 поверхности моря пересекает в одну секунду около 2,7•1021 фотонов. По одному количеству фотонов трудно судить об энергии, приносимой ими в море. Дело в том, что энергия фотонов различна и, как следует из приведенных выше формул определяется частотой, с которой фотоны были излучены, т. е. длиной волны света. Фотонам различной «окраски» соответствует разная энергия.

Пользуясь существующим соотношением, подсчитаем, какой же энергией обладает фотон фиолетового с длиной волны 380 нм [4] и фотон красного света, имеющий длину волны 770 нм:

джоулей = 3,3 эв;

джоулей = 1,6 эв.

Таким образом, фиолетовый свет вдвое энергичнее красного. В свою очередь это приводит к определенным различиям во взаимоотношениях фотонов с молекулами воды. Для того чтобы понять их характер и то, как лучистая энергия преобразуется в тепловую, надо обратиться к молекуле воды (рис. 2, а).

4

1 нм = 10– 9 м = 10 А

Она состоит из двух положительно заряженных атомов водорода и одного отрицательно заряженного атома кислорода. Атомы располагаются по вершинам равнобедренного треугольника и удерживаются относительно друг друга «пружинами» энергетических связей. Подобная система обладает определенным запасом кинетической энергии и находится в непрерывном движении: атомы на своих «пружинах» совершают упругие колебания с определенным размахом, а молекула в целом может перемещаться и вращаться относительно любой из осей х, у или z.

В воде отдельные молекулы Н2O стараются сгруппироваться в ассоциации в виде

своеобразных тетраэдров (рис. 2, б). В силу электрического характера межмолекулярных связей каждый отрицательно заряженный атом кислорода тянется к положительному атому водорода. Такой контакт молекул носит название водородной связи.

Попытаемся теперь проследить механизм преобразования лучистой энергии фотона в другие виды энергии, в частности в тепловую энергию движения молекул.

Как известно, тепловой энергией тела называют энергию неупорядоченного движения его молекул. Интенсивность этого движения определяется запасом кинетической энергии, которым обладают молекулы.

Далее представим себе, что в одну из молекул ударит квант световой энергии — фотон. Что может произойти? Молекула поглощает фотон, т. е. увеличивает свою энергию на величину, равную энергии поглощенного фотона, или, как говорят физики, происходит возбуждение молекулы. Хотя в возбужденном состоянии молекула находится очень недолго (порядка 10– 8—10– 9 сек), но за это время она тем не менее может успеть пройти расстояние, отделяющее ее от соседней молекулы, находящейся в невозбужденном состоянии, и передать ей излишек своей энергии.

Таким образом, энергия поглощенного фотона превращается в энергию колебательного, вращательного и поступательного движения молекул, т. е. в тепловую энергию. Растолкав в своем движении соседние молекулы и отдав им избыточную энергию, приобретенную у поглощенного фотона, наша молекула вновь ждет встречи со следующим фотоном. Но каждая ли встреча с квантом энергии кончается для молекулы благополучно? Оказывается, нет. Достаточно молекуле воды поглотить фотон, обладающий энергией 5,1 эв, и она может перестать существовать как единое целое. Такой фотон разрывает внутренние связи молекулы воды, и она распадается (диссоциирует) на Н и OH, а если энергия фотона была 9,5 эв, то на Н — О—Н [5] .

5

Эти цифры относятся к молекуле Н2O, когда она находится в газообразном состоянии.

Рис. 2. Строение молекул воды (а) и их взаимное расположение (б)

Может ли свет в море произвести такое разрушение молекул? К счастью, нет. Ведь энергия фотонов видимого света, распространяющегося в море, не превышает, как мы рассчитывали, 3,3 эв. Это разрушение могли бы вызвать фотоны ультрафиолетового света, имеющие длину волны излучения менее 240 нм. Однако, как мы узнаем в дальнейшем, такой свет практически полностью задерживается атмосферой и не достигает поверхности моря. А вот для нарушения водородной связи, т. е. разрушения ассоциаций молекул, энергии видимого света достаточно, ибо энергия водородных связей меньше 1 эв. Таким образом, свет, проникающий в толщу моря, заставляет молекулы воды беспрерывно перемещаться, соединяться друг с другом и делиться энергией, полученной у поглощенных фотонов. Причем обладающий меньшей энергией красный свет поглощается быстрее синего и подавляющая часть его лучистой энергии переходит в тепловую.

Обладающий большей энергией синий фотон способен более длительное время противиться поглощению. При столкновении с молекулой он лишь несколько изменяет направление своего движения, но продвигается дальше. Только после многократных столкновений он в конце концов поглощается при очередной встрече с молекулой воды.

Совокупность этих, казалось бы, ничтожно малых процессов, умноженная на их массовость, обусловливает в конечном счет движение вод в океане, их температуру и жизнедеятельность организмов, населяющих его толщу.

Поделиться:
Популярные книги

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

(Не) Все могут короли

Распопов Дмитрий Викторович
3. Венецианский купец
Фантастика:
попаданцы
альтернативная история
6.79
рейтинг книги
(Не) Все могут короли

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Таня Гроттер и Исчезающий Этаж

Емец Дмитрий Александрович
2. Таня Гроттер
Фантастика:
фэнтези
8.82
рейтинг книги
Таня Гроттер и Исчезающий Этаж

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Чехов

Гоблин (MeXXanik)
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
5.00
рейтинг книги
Чехов

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9