Чтение онлайн

на главную - закладки

Жанры

Сын Ра, Любящий своего отца, Птолемей IV
Шрифт:

Конечно же, это не значило, что они вообще не могли применять насилие по отношению ко мне, да и вовсе не значило, что я мог позволить себе что угодно, но удерживало их от насилия.

Поэтому, воспользовавшись этим преимуществом, я сделал ход конём — показал им их ничтожность в том, чем они гордились больше всего — науке.

Нуль и мнимые числа? Проблема Кардано, комплексные числа и комплексные плоскости, модули чисел, измена геометрии с алгеброй — мне понадобилось 3 года, но я таки доказал этим брюзгам, что такое мощь комплексных чисел.

Унизив

их, я заставил этих «величайших из умов» признать, что они и их мысли — примитивное ничто в сравнении с будущим. Я доказал им, что их мастерство прозы, личная харизма и умение написать действительно занимательный текст — ничто в сравнении с моим сухим, обезличенным текстом, где применяются самые различные обозначения, сокращения и условности.

Разумеется, аргументы были всё те же — мнимых чисел не существует в реальности. Ну, собственно, как и отрицательных чисел, нуля, рациональных чисел, корней из отрицательных, а также многих других вещей, которые нельзя увидеть глазом.

Так что, как ни странно, пришлось объяснять им, что нуль существует, и если приводить наиболее понятный пример — это отсутствие или ничего. Конечно же, подобная формулировка их не прельстила, а потому в ответ на неё я получил «что и требовалось доказать — царская кровь не гарантия великого ума, а потому дитя — это всё ещё дитя, какой бы гений в нём не поселился и каких бы кровей оно ни было, а потом его максимум — примитивные, как и само его детское мышление, формулировки».

Было очень обидно, но всё же пришлось сформировать более внятную формулировку, подходящую и понятную для них — «нуль — это целое, натуральное число, которое при сложении с любым числом или вычитании из него не меняет последнее, то есть, даёт результат, равный этому последнему».

Если же мы говорим про математику как таковую в контексте позиционной системы счисления, то «нуль — это математический знак, выражающий отсутствие значения данного разряда в записи числа в позиционной системе счисления».

Для последнего значения мне пришлось объяснить им смысл позиционной системы счисления, а также то, почему она удобнее непозиционных систем счисления при различных операциях, а также, почему нуль в этой системе — один из самых важных её элементов.

Показав на ряде примеров, почему без нуля математика существовать не может, а также неоспоримое превосходство позиционных систем, причём не только десятичной системы, но и других, над непозиционными системами, я закрепил своё первое завоевание — великолепный и всемогущий нуль.

Затем, чтобы рассказать им, почему мнимое число — это то, без чего математика, и в особенности алгебра, не будет полноценной системой. Собственно, тут мне и помогла проблема Кардано — «x2+1=0». Согласно основной теореме алгебры у этого многочлена должен быть минимум 1 корень, так как речь идёт о комплексных числах

Тут я, в свою очередь, вынужден был объяснить, что такое основная теорема алгебры, причём нежно и аккуратно, чтобы не вызывать особых потрясений разума.

Впоследствии

же, так как моё доказательство с привлечением неалгебраических концепций было неубедительным, мне пришлось ещё и предоставить полное и строгое доказательство, заимствованное мною у господина по имени Гаусс.

Разумеется, не обошлось также без теоремы Лиувилля и теоремы Безе, которые отныне были мной присвоены и стали называться «Первая теорема Птолемея» и «Вторая теорема Птолемея». Да-да, моё чувство собственной важности безгранично, а наглость — невозможно велика.

Впрочем, даже без объяснения таких понятий, как поле комплексных чисел, теорема Лиувилля, теорема Безе, а также других, мне удалось им наглядно показать, что если следовать их математике, то у «x2+1=0» решений быть не может, так как не существует нуля, а ещё корня из отрицательного числа.

То есть, для них «x=-1» принципиально не решается. Если ввести математический знак «i», то есть, «мнимое» (хотя оно и никакое не мнимое, в чём я солидарен с Гауссом) число, под которым мы понимаем «-1», то всё становится очень просто.

Ну, вернее, всё становится очень просто, если внятно объяснить, почему используется комплексная плоскость и что это вообще такое, а также такие вещи, как модуль и аргумент комплексного числа, свойства мнимого числа и его закономерности, а также всё прочее.

Это было сложно, да и, по сути, я в течение нескольких лет учил целую кучку учёных, попутно упражняя свою память, пока записывал все эти ценнейшие знания на более надёжные носители информации.

В результате, за эти 5 лет, к тому моменту, когда мне исполнилось всего 8, я стал уже величайшим математиком всех времён и народов, хоть и не своими заслугами.

По сути, чтобы просто объяснить этим учёными лбам математику уровня 9 класса, мне пришлось родить из себя алгебру, геометрию, науку о комплексных числах.

То есть, продвинуть математику с уровня III века до н. э. до уровня где-то XIX века. Было очень сложно, было очень утомительно, но был совершён такой внушительный научный рывок, что я обрёл ореол чуть ли не умнейшего человека во всей галактике.

Ну что же, нечто подобное бывает, когда один человек узурпирует труды Д’Аламбера, Гаусса, Эйлера, Декарта, Муавра, Кардано, Бомбелли, Котса, Жирара, Карно, Коши и других великих математиков. Сердечная им благодарность за это — их труды верно отслужили своё на благо величайшей и благороднейшей цели — триумфа науки.

Впрочем, не то чтобы все «мои» достижения крутились вокруг математики, так как я очень многое приложил для развития и многих других областей. В конце концов, не зря же я посвятил всю свою предыдущую жизнь непрерывному поглощению научных знаний.

В любом случае, так или иначе, примерно так я и провёл пять лет своей жизни, прежде чем мне стукнуло 8. В итоге, конечно, всё вышло немного не так, как я хотел бы, но ладно — я провёл эти 5 лет с пользой, а потому не слишком сильно жалуюсь.

Поделиться:
Популярные книги

Страж Тысячемирья

Земляной Андрей Борисович
5. Страж
Фантастика:
боевая фантастика
альтернативная история
фэнтези
5.00
рейтинг книги
Страж Тысячемирья

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Хозяйка сердца звёздного капитана

Сью Санна
2. Переселенцы в будущее
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка сердца звёздного капитана

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Госпожа Доктор

Каплунова Александра
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Госпожа Доктор

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Сразу после сотворения мира

Устинова Татьяна Витальевна
Детективы:
прочие детективы
8.86
рейтинг книги
Сразу после сотворения мира

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Ванька-ротный

Шумилин Александр Ильич
Фантастика:
альтернативная история
5.67
рейтинг книги
Ванька-ротный

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V